Nach k auflösen
k=-\frac{\left(3x-2\right)\left(x+1\right)}{2x+3}
x\neq -\frac{3}{2}
Nach x auflösen (komplexe Lösung)
x=\frac{\sqrt{4k^{2}-32k+25}}{6}-\frac{k}{3}-\frac{1}{6}
x=-\frac{\sqrt{4k^{2}-32k+25}}{6}-\frac{k}{3}-\frac{1}{6}
Nach x auflösen
x=\frac{\sqrt{4k^{2}-32k+25}}{6}-\frac{k}{3}-\frac{1}{6}
x=-\frac{\sqrt{4k^{2}-32k+25}}{6}-\frac{k}{3}-\frac{1}{6}\text{, }k\geq \frac{\sqrt{39}}{2}+4\text{ or }k\leq -\frac{\sqrt{39}}{2}+4
Diagramm
Teilen
In die Zwischenablage kopiert
3x^{2}+2kx+x+3k-2=0
Verwenden Sie das Distributivgesetz, um 2k+1 mit x zu multiplizieren.
2kx+x+3k-2=-3x^{2}
Subtrahieren Sie 3x^{2} von beiden Seiten. Jede Subtraktion von null ergibt ihre Negation.
2kx+3k-2=-3x^{2}-x
Subtrahieren Sie x von beiden Seiten.
2kx+3k=-3x^{2}-x+2
Auf beiden Seiten 2 addieren.
\left(2x+3\right)k=-3x^{2}-x+2
Kombinieren Sie alle Terme, die k enthalten.
\left(2x+3\right)k=2-x-3x^{2}
Die Gleichung weist die Standardform auf.
\frac{\left(2x+3\right)k}{2x+3}=-\frac{\left(3x-2\right)\left(x+1\right)}{2x+3}
Dividieren Sie beide Seiten durch 2x+3.
k=-\frac{\left(3x-2\right)\left(x+1\right)}{2x+3}
Division durch 2x+3 macht die Multiplikation mit 2x+3 rückgängig.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}