Faktorisieren
-\left(a-\frac{-\sqrt{13}-1}{2}\right)\left(a-\frac{\sqrt{13}-1}{2}\right)
Auswerten
3-a-a^{2}
Teilen
In die Zwischenablage kopiert
-a^{2}-a+3=0
Ein quadratisches Polynom kann mithilfe der Transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) faktorisiert werden, wobei x_{1} und x_{2} die Lösungen der quadratischen Gleichung ax^{2}+bx+c=0 sind.
a=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\times 3}}{2\left(-1\right)}
Alle Gleichungen der Form ax^{2}+bx+c=0 können mithilfe dieser quadratischen Gleichung gelöst werden: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Die quadratische Gleichung ergibt zwei Lösungen, eine für ± bei Addition und eine bei Subtraktion.
a=\frac{-\left(-1\right)±\sqrt{1+4\times 3}}{2\left(-1\right)}
Multiplizieren Sie -4 mit -1.
a=\frac{-\left(-1\right)±\sqrt{1+12}}{2\left(-1\right)}
Multiplizieren Sie 4 mit 3.
a=\frac{-\left(-1\right)±\sqrt{13}}{2\left(-1\right)}
Addieren Sie 1 zu 12.
a=\frac{1±\sqrt{13}}{2\left(-1\right)}
Das Gegenteil von -1 ist 1.
a=\frac{1±\sqrt{13}}{-2}
Multiplizieren Sie 2 mit -1.
a=\frac{\sqrt{13}+1}{-2}
Lösen Sie jetzt die Gleichung a=\frac{1±\sqrt{13}}{-2}, wenn ± positiv ist. Addieren Sie 1 zu \sqrt{13}.
a=\frac{-\sqrt{13}-1}{2}
Dividieren Sie 1+\sqrt{13} durch -2.
a=\frac{1-\sqrt{13}}{-2}
Lösen Sie jetzt die Gleichung a=\frac{1±\sqrt{13}}{-2}, wenn ± negativ ist. Subtrahieren Sie \sqrt{13} von 1.
a=\frac{\sqrt{13}-1}{2}
Dividieren Sie 1-\sqrt{13} durch -2.
-a^{2}-a+3=-\left(a-\frac{-\sqrt{13}-1}{2}\right)\left(a-\frac{\sqrt{13}-1}{2}\right)
Den ursprünglichen Ausdruck mithilfe von ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) faktorisieren. Setzen Sie für x_{1} \frac{-1-\sqrt{13}}{2} und für x_{2} \frac{-1+\sqrt{13}}{2} ein.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}