Direkt zum Inhalt
Nach y auflösen
Tick mark Image
Nach x auflösen (komplexe Lösung)
Tick mark Image
Nach y auflösen (komplexe Lösung)
Tick mark Image
Nach x auflösen
Tick mark Image
Diagramm

Ähnliche Aufgaben aus Websuche

Teilen

3\sqrt{3y-1}+\sqrt[3]{1-2x}-\sqrt[3]{1-2x}=-\sqrt[3]{1-2x}
\sqrt[3]{1-2x} von beiden Seiten der Gleichung subtrahieren.
3\sqrt{3y-1}=-\sqrt[3]{1-2x}
Die Subtraktion von \sqrt[3]{1-2x} von sich selbst ergibt 0.
\frac{3\sqrt{3y-1}}{3}=-\frac{\sqrt[3]{1-2x}}{3}
Dividieren Sie beide Seiten durch 3.
\sqrt{3y-1}=-\frac{\sqrt[3]{1-2x}}{3}
Division durch 3 macht die Multiplikation mit 3 rückgängig.
3y-1=\frac{\left(1-2x\right)^{\frac{2}{3}}}{9}
Erheben Sie beide Seiten der Gleichung zum Quadrat.
3y-1-\left(-1\right)=\frac{\left(1-2x\right)^{\frac{2}{3}}}{9}-\left(-1\right)
Addieren Sie 1 zu beiden Seiten der Gleichung.
3y=\frac{\left(1-2x\right)^{\frac{2}{3}}}{9}-\left(-1\right)
Die Subtraktion von -1 von sich selbst ergibt 0.
3y=\frac{\left(1-2x\right)^{\frac{2}{3}}}{9}+1
Subtrahieren Sie -1 von \frac{\left(1-2x\right)^{\frac{2}{3}}}{9}.
\frac{3y}{3}=\frac{\frac{\left(1-2x\right)^{\frac{2}{3}}}{9}+1}{3}
Dividieren Sie beide Seiten durch 3.
y=\frac{\frac{\left(1-2x\right)^{\frac{2}{3}}}{9}+1}{3}
Division durch 3 macht die Multiplikation mit 3 rückgängig.
y=\frac{\left(1-2x\right)^{\frac{2}{3}}}{27}+\frac{1}{3}
Dividieren Sie \frac{\left(1-2x\right)^{\frac{2}{3}}}{9}+1 durch 3.