Nach x auflösen
x=2
x=0
Diagramm
Teilen
In die Zwischenablage kopiert
2x-x^{2}=0
Subtrahieren Sie x^{2} von beiden Seiten.
x\left(2-x\right)=0
Klammern Sie x aus.
x=0 x=2
Um Lösungen für die Gleichungen zu finden, lösen Sie x=0 und 2-x=0.
2x-x^{2}=0
Subtrahieren Sie x^{2} von beiden Seiten.
-x^{2}+2x=0
Alle Gleichungen der Form ax^{2}+bx+c=0 können mithilfe dieser quadratischen Gleichung gelöst werden: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Die quadratische Gleichung ergibt zwei Lösungen, eine für ± bei Addition und eine bei Subtraktion.
x=\frac{-2±\sqrt{2^{2}}}{2\left(-1\right)}
Diese Gleichung hat die Standardform: ax^{2}+bx+c=0. Ersetzen Sie in der quadratischen Gleichung a durch -1, b durch 2 und c durch 0, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±2}{2\left(-1\right)}
Ziehen Sie die Quadratwurzel aus 2^{2}.
x=\frac{-2±2}{-2}
Multiplizieren Sie 2 mit -1.
x=\frac{0}{-2}
Lösen Sie jetzt die Gleichung x=\frac{-2±2}{-2}, wenn ± positiv ist. Addieren Sie -2 zu 2.
x=0
Dividieren Sie 0 durch -2.
x=-\frac{4}{-2}
Lösen Sie jetzt die Gleichung x=\frac{-2±2}{-2}, wenn ± negativ ist. Subtrahieren Sie 2 von -2.
x=2
Dividieren Sie -4 durch -2.
x=0 x=2
Die Gleichung ist jetzt gelöst.
2x-x^{2}=0
Subtrahieren Sie x^{2} von beiden Seiten.
-x^{2}+2x=0
Quadratische Gleichungen wie diese können durch quadratische Ergänzung gelöst werden. Für die Anwendung der quadratischen Ergänzung muss die Gleichung zuerst in die Form x^{2}+bx=c gebracht werden.
\frac{-x^{2}+2x}{-1}=\frac{0}{-1}
Dividieren Sie beide Seiten durch -1.
x^{2}+\frac{2}{-1}x=\frac{0}{-1}
Division durch -1 macht die Multiplikation mit -1 rückgängig.
x^{2}-2x=\frac{0}{-1}
Dividieren Sie 2 durch -1.
x^{2}-2x=0
Dividieren Sie 0 durch -1.
x^{2}-2x+1=1
Dividieren Sie -2, den Koeffizienten des Terms x, durch 2, um -1 zu erhalten. Addieren Sie dann das Quadrat von -1 zu beiden Seiten der Gleichung. Dieser Schritt macht die linke Seite der Gleichung zu einem perfekten Quadrat.
\left(x-1\right)^{2}=1
Faktor x^{2}-2x+1. Wenn x^{2}+bx+c ein perfektes Quadrat ist, kann es im Allgemeinen immer als \left(x+\frac{b}{2}\right)^{2} faktorisieren.
\sqrt{\left(x-1\right)^{2}}=\sqrt{1}
Ziehen Sie die Quadratwurzel beider Seiten der Gleichung.
x-1=1 x-1=-1
Vereinfachen.
x=2 x=0
Addieren Sie 1 zu beiden Seiten der Gleichung.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}