Nach x auflösen
x = -\frac{40}{7} = -5\frac{5}{7} \approx -5,714285714
Diagramm
Teilen
In die Zwischenablage kopiert
2x+9=-\frac{17}{7}
Der Bruch \frac{-17}{7} kann als -\frac{17}{7} umgeschrieben werden, indem das negative Vorzeichen extrahiert wird.
2x=-\frac{17}{7}-9
Subtrahieren Sie 9 von beiden Seiten.
2x=-\frac{17}{7}-\frac{63}{7}
Wandelt 9 in einen Bruch \frac{63}{7} um.
2x=\frac{-17-63}{7}
Da -\frac{17}{7} und \frac{63}{7} denselben Nenner haben, subtrahieren Sie diese, indem Sie ihre Zähler subtrahieren.
2x=-\frac{80}{7}
Subtrahieren Sie 63 von -17, um -80 zu erhalten.
x=\frac{-\frac{80}{7}}{2}
Dividieren Sie beide Seiten durch 2.
x=\frac{-80}{7\times 2}
Drücken Sie \frac{-\frac{80}{7}}{2} als Einzelbruch aus.
x=\frac{-80}{14}
Multiplizieren Sie 7 und 2, um 14 zu erhalten.
x=-\frac{40}{7}
Verringern Sie den Bruch \frac{-80}{14} um den niedrigsten Term, indem Sie 2 extrahieren und aufheben.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}