Faktorisieren
\left(3y-ab\right)\left(9y^{2}+3aby+a^{2}b^{2}\right)
Auswerten
27y^{3}-\left(ab\right)^{3}
Diagramm
Teilen
In die Zwischenablage kopiert
\left(3y-ab\right)\left(9y^{2}+3aby+a^{2}b^{2}\right)
27y^{3}-a^{3}b^{3} als \left(3y\right)^{3}-\left(ab\right)^{3} umschreiben. Die Differenz der dritten Potenzen kann nach folgender Regel faktorisiert werden: p^{3}-q^{3}=\left(p-q\right)\left(p^{2}+pq+q^{2}\right).
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}