Nach x auflösen
x = -\frac{950}{17} = -55\frac{15}{17} \approx -55,882352941
x=0
Diagramm
Teilen
In die Zwischenablage kopiert
2000\left(1+\frac{2x}{100}\right)\times 25\times 20\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiplizieren Sie beide Seiten der Gleichung mit 100.
2000\left(1+\frac{1}{50}x\right)\times 25\times 20\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Dividieren Sie 2x durch 100, um \frac{1}{50}x zu erhalten.
50000\left(1+\frac{1}{50}x\right)\times 20\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiplizieren Sie 2000 und 25, um 50000 zu erhalten.
1000000\left(1+\frac{1}{50}x\right)\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiplizieren Sie 50000 und 20, um 1000000 zu erhalten.
\left(1000000+1000000\times \frac{1}{50}x\right)\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Verwenden Sie das Distributivgesetz, um 1000000 mit 1+\frac{1}{50}x zu multiplizieren.
\left(1000000+\frac{1000000}{50}x\right)\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiplizieren Sie 1000000 und \frac{1}{50}, um \frac{1000000}{50} zu erhalten.
\left(1000000+20000x\right)\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Dividieren Sie 1000000 durch 50, um 20000 zu erhalten.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Wenden Sie das Distributivgesetz an, indem Sie jeden Term von 1000000+20000x mit jedem Term von 1-\frac{\frac{3x}{10}}{100} multiplizieren.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{3}{50}x\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Dividieren Sie 6x durch 100, um \frac{3}{50}x zu erhalten.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+2000\left(1+\frac{3}{50}x\right)\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiplizieren Sie 500 und 4, um 2000 zu erhalten.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(1+\frac{3}{50}x\right)\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiplizieren Sie 2000 und 20, um 40000 zu erhalten.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+\left(40000+40000\times \frac{3}{50}x\right)\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Verwenden Sie das Distributivgesetz, um 40000 mit 1+\frac{3}{50}x zu multiplizieren.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+\left(40000+\frac{40000\times 3}{50}x\right)\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Drücken Sie 40000\times \frac{3}{50} als Einzelbruch aus.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+\left(40000+\frac{120000}{50}x\right)\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiplizieren Sie 40000 und 3, um 120000 zu erhalten.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+\left(40000+2400x\right)\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Dividieren Sie 120000 durch 50, um 2400 zu erhalten.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Wenden Sie das Distributivgesetz an, indem Sie jeden Term von 40000+2400x mit jedem Term von 1-\frac{\frac{x}{4}}{100} multiplizieren.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Addieren Sie 1000000 und 40000, um 1040000 zu erhalten.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Kombinieren Sie 20000x und 2400x, um 22400x zu erhalten.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{1}{50}x\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Dividieren Sie 2x durch 100, um \frac{1}{50}x zu erhalten.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500\left(1+\frac{1}{50}x\right)+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiplizieren Sie 20 und 25, um 500 zu erhalten.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+500\times \frac{1}{50}x+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Verwenden Sie das Distributivgesetz, um 500 mit 1+\frac{1}{50}x zu multiplizieren.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+\frac{500}{50}x+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiplizieren Sie 500 und \frac{1}{50}, um \frac{500}{50} zu erhalten.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Dividieren Sie 500 durch 50, um 10 zu erhalten.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+5\left(1+\frac{3}{50}x\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Dividieren Sie 6x durch 100, um \frac{3}{50}x zu erhalten.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+20\left(1+\frac{3}{50}x\right)\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiplizieren Sie 5 und 4, um 20 zu erhalten.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+20+20\times \frac{3}{50}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Verwenden Sie das Distributivgesetz, um 20 mit 1+\frac{3}{50}x zu multiplizieren.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+20+\frac{20\times 3}{50}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Drücken Sie 20\times \frac{3}{50} als Einzelbruch aus.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+20+\frac{60}{50}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiplizieren Sie 20 und 3, um 60 zu erhalten.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+20+\frac{6}{5}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Verringern Sie den Bruch \frac{60}{50} um den niedrigsten Term, indem Sie 10 extrahieren und aufheben.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(520+10x+\frac{6}{5}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Addieren Sie 500 und 20, um 520 zu erhalten.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(520+\frac{56}{5}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Kombinieren Sie 10x und \frac{6}{5}x, um \frac{56}{5}x zu erhalten.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=2000\left(520+\frac{56}{5}x\right)\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiplizieren Sie 100 und 20, um 2000 zu erhalten.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=\left(1040000+2000\times \frac{56}{5}x\right)\left(1-\frac{\frac{5x}{18}}{100}\right)
Verwenden Sie das Distributivgesetz, um 2000 mit 520+\frac{56}{5}x zu multiplizieren.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=\left(1040000+\frac{2000\times 56}{5}x\right)\left(1-\frac{\frac{5x}{18}}{100}\right)
Drücken Sie 2000\times \frac{56}{5} als Einzelbruch aus.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=\left(1040000+\frac{112000}{5}x\right)\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiplizieren Sie 2000 und 56, um 112000 zu erhalten.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=\left(1040000+22400x\right)\left(1-\frac{\frac{5x}{18}}{100}\right)
Dividieren Sie 112000 durch 5, um 22400 zu erhalten.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=1040000+1040000\left(-\frac{\frac{5x}{18}}{100}\right)+22400x+22400x\left(-\frac{\frac{5x}{18}}{100}\right)
Wenden Sie das Distributivgesetz an, indem Sie jeden Term von 1040000+22400x mit jedem Term von 1-\frac{\frac{5x}{18}}{100} multiplizieren.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)-1040000=1040000\left(-\frac{\frac{5x}{18}}{100}\right)+22400x+22400x\left(-\frac{\frac{5x}{18}}{100}\right)
Subtrahieren Sie 1040000 von beiden Seiten.
1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=1040000\left(-\frac{\frac{5x}{18}}{100}\right)+22400x+22400x\left(-\frac{\frac{5x}{18}}{100}\right)
Subtrahieren Sie 1040000 von 1040000, um 0 zu erhalten.
1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)-1040000\left(-\frac{\frac{5x}{18}}{100}\right)=22400x+22400x\left(-\frac{\frac{5x}{18}}{100}\right)
Subtrahieren Sie 1040000\left(-\frac{\frac{5x}{18}}{100}\right) von beiden Seiten.
1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)-1040000\left(-\frac{\frac{5x}{18}}{100}\right)-22400x=22400x\left(-\frac{\frac{5x}{18}}{100}\right)
Subtrahieren Sie 22400x von beiden Seiten.
1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)-1040000\left(-\frac{\frac{5x}{18}}{100}\right)-22400x-22400x\left(-\frac{\frac{5x}{18}}{100}\right)=0
Subtrahieren Sie 22400x\left(-\frac{\frac{5x}{18}}{100}\right) von beiden Seiten.
100\left(1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)-1040000\left(-\frac{\frac{5x}{18}}{100}\right)-22400x\right)-2240000x\left(-\frac{\frac{5x}{18}}{100}\right)=0
Multiplizieren Sie beide Seiten der Gleichung mit 100.
100\left(2400x\left(-\frac{x}{4\times 100}\right)+20000x\left(-\frac{3x}{10\times 100}\right)+40000\left(-\frac{x}{4\times 100}\right)+1000000\left(-\frac{3x}{10\times 100}\right)+22400x-1040000\left(-\frac{5x}{18\times 100}\right)-22400x\right)-2240000x\left(-\frac{5x}{18\times 100}\right)=0
Ordnen Sie die Terme neu an.
100\left(2400x\left(-1\right)\times \frac{x}{4\times 100}+20000x\left(-1\right)\times \frac{3x}{10\times 100}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Multiplizieren Sie 40000 und -1, um -40000 zu erhalten. Multiplizieren Sie 1000000 und -1, um -1000000 zu erhalten. Multiplizieren Sie -1 und 1040000, um -1040000 zu erhalten.
100\left(-2400x\times \frac{x}{4\times 100}+20000x\left(-1\right)\times \frac{3x}{10\times 100}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Multiplizieren Sie 2400 und -1, um -2400 zu erhalten.
100\left(-2400x\times \frac{x}{400}+20000x\left(-1\right)\times \frac{3x}{10\times 100}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Multiplizieren Sie 4 und 100, um 400 zu erhalten.
100\left(-6xx+20000x\left(-1\right)\times \frac{3x}{10\times 100}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Den größten gemeinsamen Faktor 400 in 2400 und 400 aufheben.
100\left(-6xx-20000x\times \frac{3x}{10\times 100}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Multiplizieren Sie 20000 und -1, um -20000 zu erhalten.
100\left(-6xx-20000x\times \frac{3x}{1000}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Multiplizieren Sie 10 und 100, um 1000 zu erhalten.
100\left(-6xx-20\times 3xx-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Den größten gemeinsamen Faktor 1000 in 20000 und 1000 aufheben.
100\left(-6xx-20\times 3xx-40000\times \frac{x}{400}-1000000\times \frac{3x}{10\times 100}+22400x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Multiplizieren Sie 4 und 100, um 400 zu erhalten.
100\left(-6xx-20\times 3xx-100x-1000000\times \frac{3x}{10\times 100}+22400x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Den größten gemeinsamen Faktor 400 in 40000 und 400 aufheben.
100\left(-6xx-20\times 3xx-100x-1000000\times \frac{3x}{1000}+22400x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Multiplizieren Sie 10 und 100, um 1000 zu erhalten.
100\left(-6xx-20\times 3xx-100x-1000\times 3x+22400x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Den größten gemeinsamen Faktor 1000 in 1000000 und 1000 aufheben.
100\left(-6xx-20\times 3xx+22300x-1000\times 3x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Kombinieren Sie -100x und 22400x, um 22300x zu erhalten.
100\left(-6xx-20\times 3xx+22300x-1000\times 3x+1040000\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Multiplizieren Sie -1040000 und -1, um 1040000 zu erhalten.
100\left(-6xx-20\times 3xx+22300x-1000\times 3x+1040000\times \frac{x}{18\times 20}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Heben Sie 5 sowohl im Zähler als auch im Nenner auf.
100\left(-6xx-20\times 3xx+22300x-1000\times 3x+1040000\times \frac{x}{360}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Multiplizieren Sie 18 und 20, um 360 zu erhalten.
100\left(-6xx-20\times 3xx+22300x-1000\times 3x+\frac{1040000x}{360}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Drücken Sie 1040000\times \frac{x}{360} als Einzelbruch aus.
100\left(-6xx-20\times 3xx-100x-1000\times 3x+\frac{1040000x}{360}\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Kombinieren Sie 22300x und -22400x, um -100x zu erhalten.
100\left(-6xx-60xx-100x-3000x+\frac{1040000x}{360}\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Multiplizieren Sie -20 und 3, um -60 zu erhalten. Multiplizieren Sie -1000 und 3, um -3000 zu erhalten.
100\left(-66xx-100x-3000x+\frac{1040000x}{360}\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Kombinieren Sie -6xx und -60xx, um -66xx zu erhalten.
100\left(-66xx-3100x+\frac{1040000x}{360}\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Kombinieren Sie -100x und -3000x, um -3100x zu erhalten.
-6600x^{2}-310000x+100\times \frac{1040000x}{360}-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Verwenden Sie das Distributivgesetz, um 100 mit -66xx-3100x+\frac{1040000x}{360} zu multiplizieren.
-6600x^{2}-310000x+100\times \frac{26000}{9}x-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Dividieren Sie 1040000x durch 360, um \frac{26000}{9}x zu erhalten.
-6600x^{2}-310000x+\frac{100\times 26000}{9}x-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Drücken Sie 100\times \frac{26000}{9} als Einzelbruch aus.
-6600x^{2}-310000x+\frac{2600000}{9}x-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Multiplizieren Sie 100 und 26000, um 2600000 zu erhalten.
-6600x^{2}-\frac{190000}{9}x-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Kombinieren Sie -310000x und \frac{2600000}{9}x, um -\frac{190000}{9}x zu erhalten.
-6600x^{2}-\frac{190000}{9}x+2240000x\times \frac{5x}{18\times 100}=0
Multiplizieren Sie -2240000 und -1, um 2240000 zu erhalten.
-6600x^{2}-\frac{190000}{9}x+2240000x\times \frac{x}{18\times 20}=0
Heben Sie 5 sowohl im Zähler als auch im Nenner auf.
-6600x^{2}-\frac{190000}{9}x+2240000x\times \frac{x}{360}=0
Multiplizieren Sie 18 und 20, um 360 zu erhalten.
-6600x^{2}-\frac{190000}{9}x+\frac{2240000x}{360}x=0
Drücken Sie 2240000\times \frac{x}{360} als Einzelbruch aus.
-6600x^{2}-\frac{190000}{9}x+\frac{56000}{9}xx=0
Dividieren Sie 2240000x durch 360, um \frac{56000}{9}x zu erhalten.
-6600x^{2}-\frac{190000}{9}x+\frac{56000}{9}x^{2}=0
Multiplizieren Sie x und x, um x^{2} zu erhalten.
-\frac{3400}{9}x^{2}-\frac{190000}{9}x=0
Kombinieren Sie -6600x^{2} und \frac{56000}{9}x^{2}, um -\frac{3400}{9}x^{2} zu erhalten.
x=\frac{-\left(-\frac{190000}{9}\right)±\sqrt{\left(-\frac{190000}{9}\right)^{2}}}{2\left(-\frac{3400}{9}\right)}
Diese Gleichung hat die Standardform: ax^{2}+bx+c=0. Ersetzen Sie in der quadratischen Gleichung a durch -\frac{3400}{9}, b durch -\frac{190000}{9} und c durch 0, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{190000}{9}\right)±\frac{190000}{9}}{2\left(-\frac{3400}{9}\right)}
Ziehen Sie die Quadratwurzel aus \left(-\frac{190000}{9}\right)^{2}.
x=\frac{\frac{190000}{9}±\frac{190000}{9}}{2\left(-\frac{3400}{9}\right)}
Das Gegenteil von -\frac{190000}{9} ist \frac{190000}{9}.
x=\frac{\frac{190000}{9}±\frac{190000}{9}}{-\frac{6800}{9}}
Multiplizieren Sie 2 mit -\frac{3400}{9}.
x=\frac{\frac{380000}{9}}{-\frac{6800}{9}}
Lösen Sie jetzt die Gleichung x=\frac{\frac{190000}{9}±\frac{190000}{9}}{-\frac{6800}{9}}, wenn ± positiv ist. Addieren Sie \frac{190000}{9} zu \frac{190000}{9}, indem Sie einen gemeinsamen Nenner suchen und die Zähler addieren. Kürzen Sie anschließend den Bruch auf die kleinsten möglichen Terme.
x=-\frac{950}{17}
Dividieren Sie \frac{380000}{9} durch -\frac{6800}{9}, indem Sie \frac{380000}{9} mit dem Kehrwert von -\frac{6800}{9} multiplizieren.
x=\frac{0}{-\frac{6800}{9}}
Lösen Sie jetzt die Gleichung x=\frac{\frac{190000}{9}±\frac{190000}{9}}{-\frac{6800}{9}}, wenn ± negativ ist. Subtrahieren Sie \frac{190000}{9} von \frac{190000}{9}, indem Sie einen gemeinsamen Nenner suchen und die Zähler subtrahieren. Kürzen Sie anschließend den Bruch auf die kleinsten möglichen Terme.
x=0
Dividieren Sie 0 durch -\frac{6800}{9}, indem Sie 0 mit dem Kehrwert von -\frac{6800}{9} multiplizieren.
x=-\frac{950}{17} x=0
Die Gleichung ist jetzt gelöst.
2000\left(1+\frac{2x}{100}\right)\times 25\times 20\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiplizieren Sie beide Seiten der Gleichung mit 100.
2000\left(1+\frac{1}{50}x\right)\times 25\times 20\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Dividieren Sie 2x durch 100, um \frac{1}{50}x zu erhalten.
50000\left(1+\frac{1}{50}x\right)\times 20\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiplizieren Sie 2000 und 25, um 50000 zu erhalten.
1000000\left(1+\frac{1}{50}x\right)\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiplizieren Sie 50000 und 20, um 1000000 zu erhalten.
\left(1000000+1000000\times \frac{1}{50}x\right)\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Verwenden Sie das Distributivgesetz, um 1000000 mit 1+\frac{1}{50}x zu multiplizieren.
\left(1000000+\frac{1000000}{50}x\right)\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiplizieren Sie 1000000 und \frac{1}{50}, um \frac{1000000}{50} zu erhalten.
\left(1000000+20000x\right)\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Dividieren Sie 1000000 durch 50, um 20000 zu erhalten.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Wenden Sie das Distributivgesetz an, indem Sie jeden Term von 1000000+20000x mit jedem Term von 1-\frac{\frac{3x}{10}}{100} multiplizieren.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{3}{50}x\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Dividieren Sie 6x durch 100, um \frac{3}{50}x zu erhalten.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+2000\left(1+\frac{3}{50}x\right)\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiplizieren Sie 500 und 4, um 2000 zu erhalten.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(1+\frac{3}{50}x\right)\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiplizieren Sie 2000 und 20, um 40000 zu erhalten.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+\left(40000+40000\times \frac{3}{50}x\right)\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Verwenden Sie das Distributivgesetz, um 40000 mit 1+\frac{3}{50}x zu multiplizieren.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+\left(40000+\frac{40000\times 3}{50}x\right)\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Drücken Sie 40000\times \frac{3}{50} als Einzelbruch aus.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+\left(40000+\frac{120000}{50}x\right)\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiplizieren Sie 40000 und 3, um 120000 zu erhalten.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+\left(40000+2400x\right)\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Dividieren Sie 120000 durch 50, um 2400 zu erhalten.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Wenden Sie das Distributivgesetz an, indem Sie jeden Term von 40000+2400x mit jedem Term von 1-\frac{\frac{x}{4}}{100} multiplizieren.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Addieren Sie 1000000 und 40000, um 1040000 zu erhalten.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Kombinieren Sie 20000x und 2400x, um 22400x zu erhalten.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{1}{50}x\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Dividieren Sie 2x durch 100, um \frac{1}{50}x zu erhalten.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500\left(1+\frac{1}{50}x\right)+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiplizieren Sie 20 und 25, um 500 zu erhalten.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+500\times \frac{1}{50}x+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Verwenden Sie das Distributivgesetz, um 500 mit 1+\frac{1}{50}x zu multiplizieren.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+\frac{500}{50}x+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiplizieren Sie 500 und \frac{1}{50}, um \frac{500}{50} zu erhalten.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Dividieren Sie 500 durch 50, um 10 zu erhalten.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+5\left(1+\frac{3}{50}x\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Dividieren Sie 6x durch 100, um \frac{3}{50}x zu erhalten.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+20\left(1+\frac{3}{50}x\right)\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiplizieren Sie 5 und 4, um 20 zu erhalten.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+20+20\times \frac{3}{50}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Verwenden Sie das Distributivgesetz, um 20 mit 1+\frac{3}{50}x zu multiplizieren.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+20+\frac{20\times 3}{50}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Drücken Sie 20\times \frac{3}{50} als Einzelbruch aus.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+20+\frac{60}{50}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiplizieren Sie 20 und 3, um 60 zu erhalten.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+20+\frac{6}{5}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Verringern Sie den Bruch \frac{60}{50} um den niedrigsten Term, indem Sie 10 extrahieren und aufheben.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(520+10x+\frac{6}{5}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Addieren Sie 500 und 20, um 520 zu erhalten.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(520+\frac{56}{5}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Kombinieren Sie 10x und \frac{6}{5}x, um \frac{56}{5}x zu erhalten.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=2000\left(520+\frac{56}{5}x\right)\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiplizieren Sie 100 und 20, um 2000 zu erhalten.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=\left(1040000+2000\times \frac{56}{5}x\right)\left(1-\frac{\frac{5x}{18}}{100}\right)
Verwenden Sie das Distributivgesetz, um 2000 mit 520+\frac{56}{5}x zu multiplizieren.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=\left(1040000+\frac{2000\times 56}{5}x\right)\left(1-\frac{\frac{5x}{18}}{100}\right)
Drücken Sie 2000\times \frac{56}{5} als Einzelbruch aus.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=\left(1040000+\frac{112000}{5}x\right)\left(1-\frac{\frac{5x}{18}}{100}\right)
Multiplizieren Sie 2000 und 56, um 112000 zu erhalten.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=\left(1040000+22400x\right)\left(1-\frac{\frac{5x}{18}}{100}\right)
Dividieren Sie 112000 durch 5, um 22400 zu erhalten.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=1040000+1040000\left(-\frac{\frac{5x}{18}}{100}\right)+22400x+22400x\left(-\frac{\frac{5x}{18}}{100}\right)
Wenden Sie das Distributivgesetz an, indem Sie jeden Term von 1040000+22400x mit jedem Term von 1-\frac{\frac{5x}{18}}{100} multiplizieren.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)-1040000\left(-\frac{\frac{5x}{18}}{100}\right)=1040000+22400x+22400x\left(-\frac{\frac{5x}{18}}{100}\right)
Subtrahieren Sie 1040000\left(-\frac{\frac{5x}{18}}{100}\right) von beiden Seiten.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)-1040000\left(-\frac{\frac{5x}{18}}{100}\right)-22400x=1040000+22400x\left(-\frac{\frac{5x}{18}}{100}\right)
Subtrahieren Sie 22400x von beiden Seiten.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)-1040000\left(-\frac{\frac{5x}{18}}{100}\right)-22400x-22400x\left(-\frac{\frac{5x}{18}}{100}\right)=1040000
Subtrahieren Sie 22400x\left(-\frac{\frac{5x}{18}}{100}\right) von beiden Seiten.
100\left(1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)-1040000\left(-\frac{\frac{5x}{18}}{100}\right)-22400x\right)-2240000x\left(-\frac{\frac{5x}{18}}{100}\right)=104000000
Multiplizieren Sie beide Seiten der Gleichung mit 100.
100\left(2400x\left(-\frac{x}{4\times 100}\right)+20000x\left(-\frac{3x}{10\times 100}\right)+40000\left(-\frac{x}{4\times 100}\right)+1000000\left(-\frac{3x}{10\times 100}\right)+22400x+1040000-1040000\left(-\frac{5x}{18\times 100}\right)-22400x\right)-2240000x\left(-\frac{5x}{18\times 100}\right)=104000000
Ordnen Sie die Terme neu an.
100\left(2400x\left(-1\right)\times \frac{x}{4\times 100}+20000x\left(-1\right)\times \frac{3x}{10\times 100}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Multiplizieren Sie 40000 und -1, um -40000 zu erhalten. Multiplizieren Sie 1000000 und -1, um -1000000 zu erhalten. Multiplizieren Sie -1 und 1040000, um -1040000 zu erhalten.
100\left(-2400x\times \frac{x}{4\times 100}+20000x\left(-1\right)\times \frac{3x}{10\times 100}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Multiplizieren Sie 2400 und -1, um -2400 zu erhalten.
100\left(-2400x\times \frac{x}{400}+20000x\left(-1\right)\times \frac{3x}{10\times 100}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Multiplizieren Sie 4 und 100, um 400 zu erhalten.
100\left(-6xx+20000x\left(-1\right)\times \frac{3x}{10\times 100}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Den größten gemeinsamen Faktor 400 in 2400 und 400 aufheben.
100\left(-6xx-20000x\times \frac{3x}{10\times 100}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Multiplizieren Sie 20000 und -1, um -20000 zu erhalten.
100\left(-6xx-20000x\times \frac{3x}{1000}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Multiplizieren Sie 10 und 100, um 1000 zu erhalten.
100\left(-6xx-20\times 3xx-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Den größten gemeinsamen Faktor 1000 in 20000 und 1000 aufheben.
100\left(-6xx-20\times 3xx-40000\times \frac{x}{400}-1000000\times \frac{3x}{10\times 100}+22400x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Multiplizieren Sie 4 und 100, um 400 zu erhalten.
100\left(-6xx-20\times 3xx-100x-1000000\times \frac{3x}{10\times 100}+22400x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Den größten gemeinsamen Faktor 400 in 40000 und 400 aufheben.
100\left(-6xx-20\times 3xx-100x-1000000\times \frac{3x}{1000}+22400x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Multiplizieren Sie 10 und 100, um 1000 zu erhalten.
100\left(-6xx-20\times 3xx-100x-1000\times 3x+22400x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Den größten gemeinsamen Faktor 1000 in 1000000 und 1000 aufheben.
100\left(-6xx-20\times 3xx+22300x-1000\times 3x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Kombinieren Sie -100x und 22400x, um 22300x zu erhalten.
100\left(-6xx-20\times 3xx+22300x-1000\times 3x+1040000+1040000\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Multiplizieren Sie -1040000 und -1, um 1040000 zu erhalten.
100\left(-6xx-20\times 3xx+22300x-1000\times 3x+1040000+1040000\times \frac{x}{18\times 20}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Heben Sie 5 sowohl im Zähler als auch im Nenner auf.
100\left(-6xx-20\times 3xx+22300x-1000\times 3x+1040000+1040000\times \frac{x}{360}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Multiplizieren Sie 18 und 20, um 360 zu erhalten.
100\left(-6xx-20\times 3xx+22300x-1000\times 3x+1040000+\frac{1040000x}{360}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Drücken Sie 1040000\times \frac{x}{360} als Einzelbruch aus.
100\left(-6xx-20\times 3xx-100x-1000\times 3x+1040000+\frac{1040000x}{360}\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Kombinieren Sie 22300x und -22400x, um -100x zu erhalten.
100\left(-6xx-60xx-100x-3000x+1040000+\frac{1040000x}{360}\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Multiplizieren Sie -20 und 3, um -60 zu erhalten. Multiplizieren Sie -1000 und 3, um -3000 zu erhalten.
100\left(-66xx-100x-3000x+1040000+\frac{1040000x}{360}\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Kombinieren Sie -6xx und -60xx, um -66xx zu erhalten.
100\left(-66xx-3100x+1040000+\frac{1040000x}{360}\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Kombinieren Sie -100x und -3000x, um -3100x zu erhalten.
-6600x^{2}-310000x+104000000+100\times \frac{1040000x}{360}-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Verwenden Sie das Distributivgesetz, um 100 mit -66xx-3100x+1040000+\frac{1040000x}{360} zu multiplizieren.
-6600x^{2}-310000x+104000000+100\times \frac{26000}{9}x-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Dividieren Sie 1040000x durch 360, um \frac{26000}{9}x zu erhalten.
-6600x^{2}-310000x+104000000+\frac{100\times 26000}{9}x-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Drücken Sie 100\times \frac{26000}{9} als Einzelbruch aus.
-6600x^{2}-310000x+104000000+\frac{2600000}{9}x-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Multiplizieren Sie 100 und 26000, um 2600000 zu erhalten.
-6600x^{2}-\frac{190000}{9}x+104000000-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Kombinieren Sie -310000x und \frac{2600000}{9}x, um -\frac{190000}{9}x zu erhalten.
-6600x^{2}-\frac{190000}{9}x+104000000+2240000x\times \frac{5x}{18\times 100}=104000000
Multiplizieren Sie -2240000 und -1, um 2240000 zu erhalten.
-6600x^{2}-\frac{190000}{9}x+104000000+2240000x\times \frac{x}{18\times 20}=104000000
Heben Sie 5 sowohl im Zähler als auch im Nenner auf.
-6600x^{2}-\frac{190000}{9}x+104000000+2240000x\times \frac{x}{360}=104000000
Multiplizieren Sie 18 und 20, um 360 zu erhalten.
-6600x^{2}-\frac{190000}{9}x+104000000+\frac{2240000x}{360}x=104000000
Drücken Sie 2240000\times \frac{x}{360} als Einzelbruch aus.
-6600x^{2}-\frac{190000}{9}x+104000000+\frac{56000}{9}xx=104000000
Dividieren Sie 2240000x durch 360, um \frac{56000}{9}x zu erhalten.
-6600x^{2}-\frac{190000}{9}x+104000000+\frac{56000}{9}x^{2}=104000000
Multiplizieren Sie x und x, um x^{2} zu erhalten.
-\frac{3400}{9}x^{2}-\frac{190000}{9}x+104000000=104000000
Kombinieren Sie -6600x^{2} und \frac{56000}{9}x^{2}, um -\frac{3400}{9}x^{2} zu erhalten.
-\frac{3400}{9}x^{2}-\frac{190000}{9}x=104000000-104000000
Subtrahieren Sie 104000000 von beiden Seiten.
-\frac{3400}{9}x^{2}-\frac{190000}{9}x=0
Subtrahieren Sie 104000000 von 104000000, um 0 zu erhalten.
\frac{-\frac{3400}{9}x^{2}-\frac{190000}{9}x}{-\frac{3400}{9}}=\frac{0}{-\frac{3400}{9}}
Beide Seiten der Gleichung durch -\frac{3400}{9} dividieren, was gleichbedeutend mit der Multiplikation beider Seiten mit dem Kehrwert des Bruchs ist.
x^{2}+\left(-\frac{\frac{190000}{9}}{-\frac{3400}{9}}\right)x=\frac{0}{-\frac{3400}{9}}
Division durch -\frac{3400}{9} macht die Multiplikation mit -\frac{3400}{9} rückgängig.
x^{2}+\frac{950}{17}x=\frac{0}{-\frac{3400}{9}}
Dividieren Sie -\frac{190000}{9} durch -\frac{3400}{9}, indem Sie -\frac{190000}{9} mit dem Kehrwert von -\frac{3400}{9} multiplizieren.
x^{2}+\frac{950}{17}x=0
Dividieren Sie 0 durch -\frac{3400}{9}, indem Sie 0 mit dem Kehrwert von -\frac{3400}{9} multiplizieren.
x^{2}+\frac{950}{17}x+\left(\frac{475}{17}\right)^{2}=\left(\frac{475}{17}\right)^{2}
Dividieren Sie \frac{950}{17}, den Koeffizienten des Terms x, durch 2, um \frac{475}{17} zu erhalten. Addieren Sie dann das Quadrat von \frac{475}{17} zu beiden Seiten der Gleichung. Dieser Schritt macht die linke Seite der Gleichung zu einem perfekten Quadrat.
x^{2}+\frac{950}{17}x+\frac{225625}{289}=\frac{225625}{289}
Bestimmen Sie das Quadrat von \frac{475}{17}, indem Sie das Quadrat des Zählers und das Quadrat des Nenners des Bruchs bilden.
\left(x+\frac{475}{17}\right)^{2}=\frac{225625}{289}
Faktor x^{2}+\frac{950}{17}x+\frac{225625}{289}. Wenn x^{2}+bx+c ein perfektes Quadrat ist, kann es im Allgemeinen immer als \left(x+\frac{b}{2}\right)^{2} faktorisieren.
\sqrt{\left(x+\frac{475}{17}\right)^{2}}=\sqrt{\frac{225625}{289}}
Ziehen Sie die Quadratwurzel beider Seiten der Gleichung.
x+\frac{475}{17}=\frac{475}{17} x+\frac{475}{17}=-\frac{475}{17}
Vereinfachen.
x=0 x=-\frac{950}{17}
\frac{475}{17} von beiden Seiten der Gleichung subtrahieren.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}