Nach t auflösen (komplexe Lösung)
\left\{\begin{matrix}t=\frac{4x}{x+y}\text{, }&x\neq -y\\t\in \mathrm{C}\text{, }&x=0\text{ and }y=0\end{matrix}\right,
Nach x auflösen (komplexe Lösung)
\left\{\begin{matrix}x=\frac{ty}{4-t}\text{, }&t\neq 4\\x\in \mathrm{C}\text{, }&y=0\text{ and }t=4\end{matrix}\right,
Nach t auflösen
\left\{\begin{matrix}t=\frac{4x}{x+y}\text{, }&x\neq -y\\t\in \mathrm{R}\text{, }&x=0\text{ and }y=0\end{matrix}\right,
Nach x auflösen
\left\{\begin{matrix}x=\frac{ty}{4-t}\text{, }&t\neq 4\\x\in \mathrm{R}\text{, }&y=0\text{ and }t=4\end{matrix}\right,
Diagramm
Teilen
In die Zwischenablage kopiert
4x=t\left(x+y\right)
Kombinieren Sie 2x und 2x, um 4x zu erhalten.
4x=tx+ty
Verwenden Sie das Distributivgesetz, um t mit x+y zu multiplizieren.
tx+ty=4x
Seiten vertauschen, damit alle Terme mit Variablen auf der linken Seite sind.
\left(x+y\right)t=4x
Kombinieren Sie alle Terme, die t enthalten.
\frac{\left(x+y\right)t}{x+y}=\frac{4x}{x+y}
Dividieren Sie beide Seiten durch x+y.
t=\frac{4x}{x+y}
Division durch x+y macht die Multiplikation mit x+y rückgängig.
4x=t\left(x+y\right)
Kombinieren Sie 2x und 2x, um 4x zu erhalten.
4x=tx+ty
Verwenden Sie das Distributivgesetz, um t mit x+y zu multiplizieren.
4x-tx=ty
Subtrahieren Sie tx von beiden Seiten.
\left(4-t\right)x=ty
Kombinieren Sie alle Terme, die x enthalten.
\frac{\left(4-t\right)x}{4-t}=\frac{ty}{4-t}
Dividieren Sie beide Seiten durch 4-t.
x=\frac{ty}{4-t}
Division durch 4-t macht die Multiplikation mit 4-t rückgängig.
4x=t\left(x+y\right)
Kombinieren Sie 2x und 2x, um 4x zu erhalten.
4x=tx+ty
Verwenden Sie das Distributivgesetz, um t mit x+y zu multiplizieren.
tx+ty=4x
Seiten vertauschen, damit alle Terme mit Variablen auf der linken Seite sind.
\left(x+y\right)t=4x
Kombinieren Sie alle Terme, die t enthalten.
\frac{\left(x+y\right)t}{x+y}=\frac{4x}{x+y}
Dividieren Sie beide Seiten durch x+y.
t=\frac{4x}{x+y}
Division durch x+y macht die Multiplikation mit x+y rückgängig.
4x=t\left(x+y\right)
Kombinieren Sie 2x und 2x, um 4x zu erhalten.
4x=tx+ty
Verwenden Sie das Distributivgesetz, um t mit x+y zu multiplizieren.
4x-tx=ty
Subtrahieren Sie tx von beiden Seiten.
\left(4-t\right)x=ty
Kombinieren Sie alle Terme, die x enthalten.
\frac{\left(4-t\right)x}{4-t}=\frac{ty}{4-t}
Dividieren Sie beide Seiten durch 4-t.
x=\frac{ty}{4-t}
Division durch 4-t macht die Multiplikation mit 4-t rückgängig.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}