Direkt zum Inhalt
Faktorisieren
Tick mark Image
Auswerten
Tick mark Image

Ähnliche Aufgaben aus Websuche

Teilen

p+q=5 pq=2\left(-12\right)=-24
Faktorisieren Sie den Ausdruck durch Gruppieren. Zuerst muss der Ausdruck als 2a^{2}+pa+qa-12 umgeschrieben werden. Um p und q zu finden, stellen Sie ein zu lösendes System auf.
-1,24 -2,12 -3,8 -4,6
Weil pq negativ ist, haben p und q entgegengesetzte Vorzeichen. Weil p+q positiv ist, hat die positive Zahl einen größeren Absolutwert als die negative. Alle ganzzahligen Paare auflisten, die das Produkt -24 ergeben.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
Die Summe für jedes Paar berechnen.
p=-3 q=8
Die Lösung ist das Paar, das die Summe 5 ergibt.
\left(2a^{2}-3a\right)+\left(8a-12\right)
2a^{2}+5a-12 als \left(2a^{2}-3a\right)+\left(8a-12\right) umschreiben.
a\left(2a-3\right)+4\left(2a-3\right)
Klammern Sie a in der ersten und 4 in der zweiten Gruppe aus.
\left(2a-3\right)\left(a+4\right)
Klammern Sie den gemeinsamen Term 2a-3 aus, indem Sie die distributive Eigenschaft verwenden.
2a^{2}+5a-12=0
Ein quadratisches Polynom kann mithilfe der Transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) faktorisiert werden, wobei x_{1} und x_{2} die Lösungen der quadratischen Gleichung ax^{2}+bx+c=0 sind.
a=\frac{-5±\sqrt{5^{2}-4\times 2\left(-12\right)}}{2\times 2}
Alle Gleichungen der Form ax^{2}+bx+c=0 können mithilfe dieser quadratischen Gleichung gelöst werden: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Die quadratische Gleichung ergibt zwei Lösungen, eine für ± bei Addition und eine bei Subtraktion.
a=\frac{-5±\sqrt{25-4\times 2\left(-12\right)}}{2\times 2}
5 zum Quadrat.
a=\frac{-5±\sqrt{25-8\left(-12\right)}}{2\times 2}
Multiplizieren Sie -4 mit 2.
a=\frac{-5±\sqrt{25+96}}{2\times 2}
Multiplizieren Sie -8 mit -12.
a=\frac{-5±\sqrt{121}}{2\times 2}
Addieren Sie 25 zu 96.
a=\frac{-5±11}{2\times 2}
Ziehen Sie die Quadratwurzel aus 121.
a=\frac{-5±11}{4}
Multiplizieren Sie 2 mit 2.
a=\frac{6}{4}
Lösen Sie jetzt die Gleichung a=\frac{-5±11}{4}, wenn ± positiv ist. Addieren Sie -5 zu 11.
a=\frac{3}{2}
Verringern Sie den Bruch \frac{6}{4} um den niedrigsten Term, indem Sie 2 extrahieren und aufheben.
a=-\frac{16}{4}
Lösen Sie jetzt die Gleichung a=\frac{-5±11}{4}, wenn ± negativ ist. Subtrahieren Sie 11 von -5.
a=-4
Dividieren Sie -16 durch 4.
2a^{2}+5a-12=2\left(a-\frac{3}{2}\right)\left(a-\left(-4\right)\right)
Den ursprünglichen Ausdruck mithilfe von ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) faktorisieren. Setzen Sie für x_{1} \frac{3}{2} und für x_{2} -4 ein.
2a^{2}+5a-12=2\left(a-\frac{3}{2}\right)\left(a+4\right)
Alle Ausdrücke der Form p-\left(-q\right) zu p+q vereinfachen.
2a^{2}+5a-12=2\times \frac{2a-3}{2}\left(a+4\right)
Subtrahieren Sie \frac{3}{2} von a, indem Sie einen gemeinsamen Nenner suchen und die Zähler subtrahieren. Kürzen Sie anschließend den Bruch auf die kleinsten möglichen Terme.
2a^{2}+5a-12=\left(2a-3\right)\left(a+4\right)
Den größten gemeinsamen Faktor 2 in 2 und 2 aufheben.