Nach a auflösen
a=-\frac{-x^{2}+bx+c-1}{x^{2}+2}
Nach b auflösen
\left\{\begin{matrix}b=-\frac{ax^{2}-x^{2}+c+2a-1}{x}\text{, }&x\neq 0\\b\in \mathrm{R}\text{, }&a=\frac{1-c}{2}\text{ and }x=0\end{matrix}\right,
Diagramm
Teilen
In die Zwischenablage kopiert
2a+ax^{2}+c=x^{2}+1-bx
Subtrahieren Sie bx von beiden Seiten.
2a+ax^{2}=x^{2}+1-bx-c
Subtrahieren Sie c von beiden Seiten.
\left(2+x^{2}\right)a=x^{2}+1-bx-c
Kombinieren Sie alle Terme, die a enthalten.
\left(x^{2}+2\right)a=x^{2}-bx-c+1
Die Gleichung weist die Standardform auf.
\frac{\left(x^{2}+2\right)a}{x^{2}+2}=\frac{x^{2}-bx-c+1}{x^{2}+2}
Dividieren Sie beide Seiten durch 2+x^{2}.
a=\frac{x^{2}-bx-c+1}{x^{2}+2}
Division durch 2+x^{2} macht die Multiplikation mit 2+x^{2} rückgängig.
ax^{2}+bx+c=x^{2}+1-2a
Subtrahieren Sie 2a von beiden Seiten.
bx+c=x^{2}+1-2a-ax^{2}
Subtrahieren Sie ax^{2} von beiden Seiten.
bx=x^{2}+1-2a-ax^{2}-c
Subtrahieren Sie c von beiden Seiten.
bx=-ax^{2}+x^{2}-2a-c+1
Ordnen Sie die Terme neu an.
xb=1-2a-c+x^{2}-ax^{2}
Die Gleichung weist die Standardform auf.
\frac{xb}{x}=\frac{1-2a-c+x^{2}-ax^{2}}{x}
Dividieren Sie beide Seiten durch x.
b=\frac{1-2a-c+x^{2}-ax^{2}}{x}
Division durch x macht die Multiplikation mit x rückgängig.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}