Nach x auflösen
x=-2
x=-1
Diagramm
Teilen
In die Zwischenablage kopiert
x^{2}+3x+2=0
Dividieren Sie beide Seiten durch 2.
a+b=3 ab=1\times 2=2
Um die Gleichung zu lösen, faktorisieren Sie die linke Seite durch Gruppieren. Zuerst muss die linke Seite als x^{2}+ax+bx+2 umgeschrieben werden. Um a und b zu finden, stellen Sie ein zu lösendes System auf.
a=1 b=2
Weil ab positiv ist, haben a und b dasselbe Vorzeichen. Weil a+b positiv ist, sind a und b beide positiv. Das einzige derartige Paar ist die Lösung des Systems.
\left(x^{2}+x\right)+\left(2x+2\right)
x^{2}+3x+2 als \left(x^{2}+x\right)+\left(2x+2\right) umschreiben.
x\left(x+1\right)+2\left(x+1\right)
Klammern Sie x in der ersten und 2 in der zweiten Gruppe aus.
\left(x+1\right)\left(x+2\right)
Klammern Sie den gemeinsamen Term x+1 aus, indem Sie die distributive Eigenschaft verwenden.
x=-1 x=-2
Um Lösungen für die Gleichungen zu finden, lösen Sie x+1=0 und x+2=0.
2x^{2}+6x+4=0
Alle Gleichungen der Form ax^{2}+bx+c=0 können mithilfe dieser quadratischen Gleichung gelöst werden: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Die quadratische Gleichung ergibt zwei Lösungen, eine für ± bei Addition und eine bei Subtraktion.
x=\frac{-6±\sqrt{6^{2}-4\times 2\times 4}}{2\times 2}
Diese Gleichung hat die Standardform: ax^{2}+bx+c=0. Ersetzen Sie in der quadratischen Gleichung a durch 2, b durch 6 und c durch 4, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 2\times 4}}{2\times 2}
6 zum Quadrat.
x=\frac{-6±\sqrt{36-8\times 4}}{2\times 2}
Multiplizieren Sie -4 mit 2.
x=\frac{-6±\sqrt{36-32}}{2\times 2}
Multiplizieren Sie -8 mit 4.
x=\frac{-6±\sqrt{4}}{2\times 2}
Addieren Sie 36 zu -32.
x=\frac{-6±2}{2\times 2}
Ziehen Sie die Quadratwurzel aus 4.
x=\frac{-6±2}{4}
Multiplizieren Sie 2 mit 2.
x=-\frac{4}{4}
Lösen Sie jetzt die Gleichung x=\frac{-6±2}{4}, wenn ± positiv ist. Addieren Sie -6 zu 2.
x=-1
Dividieren Sie -4 durch 4.
x=-\frac{8}{4}
Lösen Sie jetzt die Gleichung x=\frac{-6±2}{4}, wenn ± negativ ist. Subtrahieren Sie 2 von -6.
x=-2
Dividieren Sie -8 durch 4.
x=-1 x=-2
Die Gleichung ist jetzt gelöst.
2x^{2}+6x+4=0
Quadratische Gleichungen wie diese können durch quadratische Ergänzung gelöst werden. Für die Anwendung der quadratischen Ergänzung muss die Gleichung zuerst in die Form x^{2}+bx=c gebracht werden.
2x^{2}+6x+4-4=-4
4 von beiden Seiten der Gleichung subtrahieren.
2x^{2}+6x=-4
Die Subtraktion von 4 von sich selbst ergibt 0.
\frac{2x^{2}+6x}{2}=-\frac{4}{2}
Dividieren Sie beide Seiten durch 2.
x^{2}+\frac{6}{2}x=-\frac{4}{2}
Division durch 2 macht die Multiplikation mit 2 rückgängig.
x^{2}+3x=-\frac{4}{2}
Dividieren Sie 6 durch 2.
x^{2}+3x=-2
Dividieren Sie -4 durch 2.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-2+\left(\frac{3}{2}\right)^{2}
Dividieren Sie 3, den Koeffizienten des Terms x, durch 2, um \frac{3}{2} zu erhalten. Addieren Sie dann das Quadrat von \frac{3}{2} zu beiden Seiten der Gleichung. Dieser Schritt macht die linke Seite der Gleichung zu einem perfekten Quadrat.
x^{2}+3x+\frac{9}{4}=-2+\frac{9}{4}
Bestimmen Sie das Quadrat von \frac{3}{2}, indem Sie das Quadrat des Zählers und das Quadrat des Nenners des Bruchs bilden.
x^{2}+3x+\frac{9}{4}=\frac{1}{4}
Addieren Sie -2 zu \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{1}{4}
Faktor x^{2}+3x+\frac{9}{4}. Wenn x^{2}+bx+c ein perfektes Quadrat ist, kann es im Allgemeinen immer als \left(x+\frac{b}{2}\right)^{2} faktorisieren.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Ziehen Sie die Quadratwurzel beider Seiten der Gleichung.
x+\frac{3}{2}=\frac{1}{2} x+\frac{3}{2}=-\frac{1}{2}
Vereinfachen.
x=-1 x=-2
\frac{3}{2} von beiden Seiten der Gleichung subtrahieren.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}