Nach k auflösen
k=\frac{3\left(7z-4\right)}{z^{2}}
z\neq 0
Nach z auflösen (komplexe Lösung)
\left\{\begin{matrix}z=-\frac{\sqrt{3\left(147-16k\right)}-21}{2k}\text{; }z=\frac{\sqrt{3\left(147-16k\right)}+21}{2k}\text{, }&k\neq 0\\z=\frac{4}{7}\text{, }&k=0\end{matrix}\right,
Nach z auflösen
\left\{\begin{matrix}z=-\frac{\sqrt{3\left(147-16k\right)}-21}{2k}\text{; }z=\frac{\sqrt{3\left(147-16k\right)}+21}{2k}\text{, }&k\neq 0\text{ and }k\leq \frac{147}{16}\\z=\frac{4}{7}\text{, }&k=0\end{matrix}\right,
Teilen
In die Zwischenablage kopiert
8-kz^{2}+21z-20=0
Potenzieren Sie 2 mit 3, und erhalten Sie 8.
8-kz^{2}-20=-21z
Subtrahieren Sie 21z von beiden Seiten. Jede Subtraktion von null ergibt ihre Negation.
8-kz^{2}=-21z+20
Auf beiden Seiten 20 addieren.
-kz^{2}=-21z+20-8
Subtrahieren Sie 8 von beiden Seiten.
-kz^{2}=-21z+12
Subtrahieren Sie 8 von 20, um 12 zu erhalten.
\left(-z^{2}\right)k=12-21z
Die Gleichung weist die Standardform auf.
\frac{\left(-z^{2}\right)k}{-z^{2}}=\frac{12-21z}{-z^{2}}
Dividieren Sie beide Seiten durch -z^{2}.
k=\frac{12-21z}{-z^{2}}
Division durch -z^{2} macht die Multiplikation mit -z^{2} rückgängig.
k=-\frac{3\left(4-7z\right)}{z^{2}}
Dividieren Sie -21z+12 durch -z^{2}.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}