Direkt zum Inhalt
Nach n auflösen
Tick mark Image

Ähnliche Aufgaben aus Websuche

Teilen

4n-nn=4
Die Variable n kann nicht gleich 0 sein, weil die Division durch null nicht definiert ist. Multiplizieren Sie beide Seiten der Gleichung mit 4n, dem kleinsten gemeinsamen Vielfachen von 4,n.
4n-n^{2}=4
Multiplizieren Sie n und n, um n^{2} zu erhalten.
4n-n^{2}-4=0
Subtrahieren Sie 4 von beiden Seiten.
-n^{2}+4n-4=0
Alle Gleichungen der Form ax^{2}+bx+c=0 können mithilfe dieser quadratischen Gleichung gelöst werden: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Die quadratische Gleichung ergibt zwei Lösungen, eine für ± bei Addition und eine bei Subtraktion.
n=\frac{-4±\sqrt{4^{2}-4\left(-1\right)\left(-4\right)}}{2\left(-1\right)}
Diese Gleichung hat die Standardform: ax^{2}+bx+c=0. Ersetzen Sie in der quadratischen Gleichung a durch -1, b durch 4 und c durch -4, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-4±\sqrt{16-4\left(-1\right)\left(-4\right)}}{2\left(-1\right)}
4 zum Quadrat.
n=\frac{-4±\sqrt{16+4\left(-4\right)}}{2\left(-1\right)}
Multiplizieren Sie -4 mit -1.
n=\frac{-4±\sqrt{16-16}}{2\left(-1\right)}
Multiplizieren Sie 4 mit -4.
n=\frac{-4±\sqrt{0}}{2\left(-1\right)}
Addieren Sie 16 zu -16.
n=-\frac{4}{2\left(-1\right)}
Ziehen Sie die Quadratwurzel aus 0.
n=-\frac{4}{-2}
Multiplizieren Sie 2 mit -1.
n=2
Dividieren Sie -4 durch -2.
4n-nn=4
Die Variable n kann nicht gleich 0 sein, weil die Division durch null nicht definiert ist. Multiplizieren Sie beide Seiten der Gleichung mit 4n, dem kleinsten gemeinsamen Vielfachen von 4,n.
4n-n^{2}=4
Multiplizieren Sie n und n, um n^{2} zu erhalten.
-n^{2}+4n=4
Quadratische Gleichungen wie diese können durch quadratische Ergänzung gelöst werden. Für die Anwendung der quadratischen Ergänzung muss die Gleichung zuerst in die Form x^{2}+bx=c gebracht werden.
\frac{-n^{2}+4n}{-1}=\frac{4}{-1}
Dividieren Sie beide Seiten durch -1.
n^{2}+\frac{4}{-1}n=\frac{4}{-1}
Division durch -1 macht die Multiplikation mit -1 rückgängig.
n^{2}-4n=\frac{4}{-1}
Dividieren Sie 4 durch -1.
n^{2}-4n=-4
Dividieren Sie 4 durch -1.
n^{2}-4n+\left(-2\right)^{2}=-4+\left(-2\right)^{2}
Dividieren Sie -4, den Koeffizienten des Terms x, durch 2, um -2 zu erhalten. Addieren Sie dann das Quadrat von -2 zu beiden Seiten der Gleichung. Dieser Schritt macht die linke Seite der Gleichung zu einem perfekten Quadrat.
n^{2}-4n+4=-4+4
-2 zum Quadrat.
n^{2}-4n+4=0
Addieren Sie -4 zu 4.
\left(n-2\right)^{2}=0
Faktor n^{2}-4n+4. Wenn x^{2}+bx+c ein perfektes Quadrat ist, kann es im Allgemeinen immer als \left(x+\frac{b}{2}\right)^{2} faktorisieren.
\sqrt{\left(n-2\right)^{2}}=\sqrt{0}
Ziehen Sie die Quadratwurzel beider Seiten der Gleichung.
n-2=0 n-2=0
Vereinfachen.
n=2 n=2
Addieren Sie 2 zu beiden Seiten der Gleichung.
n=2
Die Gleichung ist jetzt gelöst. Die Lösungen sind identisch.