Faktorisieren
\left(c+1\right)\left(c^{22}-c^{21}+c^{20}-c^{19}+c^{18}-c^{17}+c^{16}-c^{15}+c^{14}-c^{13}+c^{12}-c^{11}+c^{10}-c^{9}+c^{8}-c^{7}+c^{6}-c^{5}+c^{4}-c^{3}+c^{2}-c+1\right)
Auswerten
c^{23}+1
Teilen
In die Zwischenablage kopiert
c^{23}+1
Multiplizieren Sie und kombinieren Sie ähnliche Terme.
\left(c+1\right)\left(c^{22}-c^{21}+c^{20}-c^{19}+c^{18}-c^{17}+c^{16}-c^{15}+c^{14}-c^{13}+c^{12}-c^{11}+c^{10}-c^{9}+c^{8}-c^{7}+c^{6}-c^{5}+c^{4}-c^{3}+c^{2}-c+1\right)
Laut dem Satz über rationale Nullstellen (Rational Root Theorem) haben alle rationalen Nullstellen eines Polynoms die Form \frac{p}{q}, wobei der konstante Ausdruck 1 durch p dividiert wird und der Leitkoeffizient 1 durch q. Eine solche Wurzel ist -1. Faktorisieren Sie das Polynom, indem Sie es durch c+1 teilen. Das Polynom c^{22}-c^{21}+c^{20}-c^{19}+c^{18}-c^{17}+c^{16}-c^{15}+c^{14}-c^{13}+c^{12}-c^{11}+c^{10}-c^{9}+c^{8}-c^{7}+c^{6}-c^{5}+c^{4}-c^{3}+c^{2}-c+1 ist nicht faktorisiert, weil es keine rationalen Nullstellen besitzt.
1+c^{23}
Potenzieren Sie 1 mit 2, und erhalten Sie 1.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}