Nach b auflösen
\left\{\begin{matrix}b=\frac{a}{3}\text{, }&a\leq 0\\b\in \mathrm{R}\text{, }&a=0\end{matrix}\right,
Nach a auflösen (komplexe Lösung)
\left\{\begin{matrix}\\a=0\text{, }&\text{unconditionally}\\a=3b\text{, }&arg(b)\geq \pi \text{ or }b=0\end{matrix}\right,
Nach b auflösen (komplexe Lösung)
\left\{\begin{matrix}b=\frac{a}{3}\text{, }&arg(a)\geq \pi \text{ or }a=0\\b\in \mathrm{C}\text{, }&a=0\end{matrix}\right,
Nach a auflösen
\left\{\begin{matrix}\\a=0\text{, }&\text{unconditionally}\\a=3b\text{, }&b\leq 0\end{matrix}\right,
Teilen
In die Zwischenablage kopiert
\sqrt{2a^{2}-3ab}=-a
Seiten vertauschen, damit alle Terme mit Variablen auf der linken Seite sind.
\left(-3a\right)b+2a^{2}=a^{2}
Erheben Sie beide Seiten der Gleichung zum Quadrat.
\left(-3a\right)b+2a^{2}-2a^{2}=a^{2}-2a^{2}
2a^{2} von beiden Seiten der Gleichung subtrahieren.
\left(-3a\right)b=a^{2}-2a^{2}
Die Subtraktion von 2a^{2} von sich selbst ergibt 0.
\left(-3a\right)b=-a^{2}
Subtrahieren Sie 2a^{2} von a^{2}.
\frac{\left(-3a\right)b}{-3a}=-\frac{a^{2}}{-3a}
Dividieren Sie beide Seiten durch -3a.
b=-\frac{a^{2}}{-3a}
Division durch -3a macht die Multiplikation mit -3a rückgängig.
b=\frac{a}{3}
Dividieren Sie -a^{2} durch -3a.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}