Nach x auflösen
x=2
Diagramm
Teilen
In die Zwischenablage kopiert
\left(x-2\right)^{2}=0
Dividieren Sie beide Seiten durch -9. Null geteilt durch eine beliebige Zahl ungleich null ergibt null.
x^{2}-4x+4=0
\left(x-2\right)^{2} mit dem binomischen Lehrsatz "\left(a-b\right)^{2}=a^{2}-2ab+b^{2}" erweitern.
a+b=-4 ab=4
Um die Gleichung, den Faktor x^{2}-4x+4 mithilfe der Formel x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) zu lösen. Um a und b zu finden, stellen Sie ein zu lösendes System auf.
-1,-4 -2,-2
Weil ab positiv ist, haben a und b dasselbe Vorzeichen. Weil a+b negativ ist, sind a und b beide negativ. Alle ganzzahligen Paare auflisten, die das Produkt 4 ergeben.
-1-4=-5 -2-2=-4
Die Summe für jedes Paar berechnen.
a=-2 b=-2
Die Lösung ist das Paar, das die Summe -4 ergibt.
\left(x-2\right)\left(x-2\right)
Schreiben Sie den faktorisierten Ausdruck "\left(x+a\right)\left(x+b\right)" mit den erhaltenen Werten um.
\left(x-2\right)^{2}
Umschreiben als binomisches Quadrat.
x=2
Um eine Lösung für die Gleichung zu finden, lösen Sie x-2=0.
\left(x-2\right)^{2}=0
Dividieren Sie beide Seiten durch -9. Null geteilt durch eine beliebige Zahl ungleich null ergibt null.
x^{2}-4x+4=0
\left(x-2\right)^{2} mit dem binomischen Lehrsatz "\left(a-b\right)^{2}=a^{2}-2ab+b^{2}" erweitern.
a+b=-4 ab=1\times 4=4
Um die Gleichung zu lösen, faktorisieren Sie die linke Seite durch Gruppieren. Zuerst muss die linke Seite als x^{2}+ax+bx+4 umgeschrieben werden. Um a und b zu finden, stellen Sie ein zu lösendes System auf.
-1,-4 -2,-2
Weil ab positiv ist, haben a und b dasselbe Vorzeichen. Weil a+b negativ ist, sind a und b beide negativ. Alle ganzzahligen Paare auflisten, die das Produkt 4 ergeben.
-1-4=-5 -2-2=-4
Die Summe für jedes Paar berechnen.
a=-2 b=-2
Die Lösung ist das Paar, das die Summe -4 ergibt.
\left(x^{2}-2x\right)+\left(-2x+4\right)
x^{2}-4x+4 als \left(x^{2}-2x\right)+\left(-2x+4\right) umschreiben.
x\left(x-2\right)-2\left(x-2\right)
Klammern Sie x in der ersten und -2 in der zweiten Gruppe aus.
\left(x-2\right)\left(x-2\right)
Klammern Sie den gemeinsamen Term x-2 aus, indem Sie die distributive Eigenschaft verwenden.
\left(x-2\right)^{2}
Umschreiben als binomisches Quadrat.
x=2
Um eine Lösung für die Gleichung zu finden, lösen Sie x-2=0.
\left(x-2\right)^{2}=0
Dividieren Sie beide Seiten durch -9. Null geteilt durch eine beliebige Zahl ungleich null ergibt null.
x^{2}-4x+4=0
\left(x-2\right)^{2} mit dem binomischen Lehrsatz "\left(a-b\right)^{2}=a^{2}-2ab+b^{2}" erweitern.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4}}{2}
Diese Gleichung hat die Standardform: ax^{2}+bx+c=0. Ersetzen Sie in der quadratischen Gleichung a durch 1, b durch -4 und c durch 4, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 4}}{2}
-4 zum Quadrat.
x=\frac{-\left(-4\right)±\sqrt{16-16}}{2}
Multiplizieren Sie -4 mit 4.
x=\frac{-\left(-4\right)±\sqrt{0}}{2}
Addieren Sie 16 zu -16.
x=-\frac{-4}{2}
Ziehen Sie die Quadratwurzel aus 0.
x=\frac{4}{2}
Das Gegenteil von -4 ist 4.
x=2
Dividieren Sie 4 durch 2.
\left(x-2\right)^{2}=0
Dividieren Sie beide Seiten durch -9. Null geteilt durch eine beliebige Zahl ungleich null ergibt null.
\sqrt{\left(x-2\right)^{2}}=\sqrt{0}
Ziehen Sie die Quadratwurzel beider Seiten der Gleichung.
x-2=0 x-2=0
Vereinfachen.
x=2 x=2
Addieren Sie 2 zu beiden Seiten der Gleichung.
x=2
Die Gleichung ist jetzt gelöst. Die Lösungen sind identisch.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}