Nach m auflösen (komplexe Lösung)
\left\{\begin{matrix}m=\frac{y-y_{1}}{x-x_{1}}\text{, }&x\neq x_{1}\\m\in \mathrm{C}\text{, }&y=y_{1}\text{ and }x=x_{1}\end{matrix}\right,
Nach x auflösen (komplexe Lösung)
\left\{\begin{matrix}x=\frac{mx_{1}+y-y_{1}}{m}\text{, }&m\neq 0\\x\in \mathrm{C}\text{, }&y=y_{1}\text{ and }m=0\end{matrix}\right,
Nach m auflösen
\left\{\begin{matrix}m=\frac{y-y_{1}}{x-x_{1}}\text{, }&x\neq x_{1}\\m\in \mathrm{R}\text{, }&y=y_{1}\text{ and }x=x_{1}\end{matrix}\right,
Nach x auflösen
\left\{\begin{matrix}x=\frac{mx_{1}+y-y_{1}}{m}\text{, }&m\neq 0\\x\in \mathrm{R}\text{, }&y=y_{1}\text{ and }m=0\end{matrix}\right,
Diagramm
Teilen
In die Zwischenablage kopiert
y-y_{1}=mx-mx_{1}
Verwenden Sie das Distributivgesetz, um m mit x-x_{1} zu multiplizieren.
mx-mx_{1}=y-y_{1}
Seiten vertauschen, damit alle Terme mit Variablen auf der linken Seite sind.
\left(x-x_{1}\right)m=y-y_{1}
Kombinieren Sie alle Terme, die m enthalten.
\frac{\left(x-x_{1}\right)m}{x-x_{1}}=\frac{y-y_{1}}{x-x_{1}}
Dividieren Sie beide Seiten durch x-x_{1}.
m=\frac{y-y_{1}}{x-x_{1}}
Division durch x-x_{1} macht die Multiplikation mit x-x_{1} rückgängig.
y-y_{1}=mx-mx_{1}
Verwenden Sie das Distributivgesetz, um m mit x-x_{1} zu multiplizieren.
mx-mx_{1}=y-y_{1}
Seiten vertauschen, damit alle Terme mit Variablen auf der linken Seite sind.
mx=y-y_{1}+mx_{1}
Auf beiden Seiten mx_{1} addieren.
mx=mx_{1}+y-y_{1}
Die Gleichung weist die Standardform auf.
\frac{mx}{m}=\frac{mx_{1}+y-y_{1}}{m}
Dividieren Sie beide Seiten durch m.
x=\frac{mx_{1}+y-y_{1}}{m}
Division durch m macht die Multiplikation mit m rückgängig.
y-y_{1}=mx-mx_{1}
Verwenden Sie das Distributivgesetz, um m mit x-x_{1} zu multiplizieren.
mx-mx_{1}=y-y_{1}
Seiten vertauschen, damit alle Terme mit Variablen auf der linken Seite sind.
\left(x-x_{1}\right)m=y-y_{1}
Kombinieren Sie alle Terme, die m enthalten.
\frac{\left(x-x_{1}\right)m}{x-x_{1}}=\frac{y-y_{1}}{x-x_{1}}
Dividieren Sie beide Seiten durch x-x_{1}.
m=\frac{y-y_{1}}{x-x_{1}}
Division durch x-x_{1} macht die Multiplikation mit x-x_{1} rückgängig.
y-y_{1}=mx-mx_{1}
Verwenden Sie das Distributivgesetz, um m mit x-x_{1} zu multiplizieren.
mx-mx_{1}=y-y_{1}
Seiten vertauschen, damit alle Terme mit Variablen auf der linken Seite sind.
mx=y-y_{1}+mx_{1}
Auf beiden Seiten mx_{1} addieren.
mx=mx_{1}+y-y_{1}
Die Gleichung weist die Standardform auf.
\frac{mx}{m}=\frac{mx_{1}+y-y_{1}}{m}
Dividieren Sie beide Seiten durch m.
x=\frac{mx_{1}+y-y_{1}}{m}
Division durch m macht die Multiplikation mit m rückgängig.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}