Nach y auflösen
y=\frac{x+3}{x\left(x-2\right)}
x\neq 2\text{ and }x\neq 0
Nach x auflösen (komplexe Lösung)
\left\{\begin{matrix}x=\frac{\sqrt{4y^{2}+16y+1}+2y+1}{2y}\text{; }x=\frac{-\sqrt{4y^{2}+16y+1}+2y+1}{2y}\text{, }&y\neq 0\\x=-3\text{, }&y=0\end{matrix}\right,
Nach x auflösen
\left\{\begin{matrix}x=\frac{\sqrt{4y^{2}+16y+1}+2y+1}{2y}\text{; }x=\frac{-\sqrt{4y^{2}+16y+1}+2y+1}{2y}\text{, }&y\leq -\frac{\sqrt{15}}{2}-2\text{ or }\left(y\neq 0\text{ and }y\geq \frac{\sqrt{15}}{2}-2\right)\\x=-3\text{, }&y=0\end{matrix}\right,
Diagramm
Teilen
In die Zwischenablage kopiert
yx^{2}-x-2xy+2=5
Verwenden Sie das Distributivgesetz, um x-2 mit xy-1 zu multiplizieren.
yx^{2}-2xy+2=5+x
Auf beiden Seiten x addieren.
yx^{2}-2xy=5+x-2
Subtrahieren Sie 2 von beiden Seiten.
yx^{2}-2xy=3+x
Subtrahieren Sie 2 von 5, um 3 zu erhalten.
\left(x^{2}-2x\right)y=3+x
Kombinieren Sie alle Terme, die y enthalten.
\left(x^{2}-2x\right)y=x+3
Die Gleichung weist die Standardform auf.
\frac{\left(x^{2}-2x\right)y}{x^{2}-2x}=\frac{x+3}{x^{2}-2x}
Dividieren Sie beide Seiten durch x^{2}-2x.
y=\frac{x+3}{x^{2}-2x}
Division durch x^{2}-2x macht die Multiplikation mit x^{2}-2x rückgängig.
y=\frac{x+3}{x\left(x-2\right)}
Dividieren Sie x+3 durch x^{2}-2x.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}