Nach k auflösen (komplexe Lösung)
k=-\frac{x\left(x+3\right)}{x^{2}+x+1}
x\neq \frac{-1+\sqrt{3}i}{2}\text{ and }x\neq \frac{-\sqrt{3}i-1}{2}
Nach k auflösen
k=-\frac{x\left(x+3\right)}{x^{2}+x+1}
Nach x auflösen (komplexe Lösung)
\left\{\begin{matrix}x=\frac{\sqrt{9+2k-3k^{2}}-k-3}{2\left(k+1\right)}\text{; }x=-\frac{\sqrt{9+2k-3k^{2}}+k+3}{2\left(k+1\right)}\text{, }&k\neq -1\\x=\frac{1}{2}\text{, }&k=-1\end{matrix}\right,
Nach x auflösen
\left\{\begin{matrix}x=\frac{\sqrt{9+2k-3k^{2}}-k-3}{2\left(k+1\right)}\text{; }x=-\frac{\sqrt{9+2k-3k^{2}}+k+3}{2\left(k+1\right)}\text{, }&k\neq -1\text{ and }k\geq \frac{1-2\sqrt{7}}{3}\text{ and }k\leq \frac{2\sqrt{7}+1}{3}\\x=\frac{1}{2}\text{, }&k=-1\end{matrix}\right,
Diagramm
Teilen
In die Zwischenablage kopiert
kx^{2}+x^{2}+\left(k+3\right)x+k=0
Verwenden Sie das Distributivgesetz, um k+1 mit x^{2} zu multiplizieren.
kx^{2}+x^{2}+kx+3x+k=0
Verwenden Sie das Distributivgesetz, um k+3 mit x zu multiplizieren.
kx^{2}+kx+3x+k=-x^{2}
Subtrahieren Sie x^{2} von beiden Seiten. Jede Subtraktion von null ergibt ihre Negation.
kx^{2}+kx+k=-x^{2}-3x
Subtrahieren Sie 3x von beiden Seiten.
\left(x^{2}+x+1\right)k=-x^{2}-3x
Kombinieren Sie alle Terme, die k enthalten.
\frac{\left(x^{2}+x+1\right)k}{x^{2}+x+1}=-\frac{x\left(x+3\right)}{x^{2}+x+1}
Dividieren Sie beide Seiten durch x^{2}+x+1.
k=-\frac{x\left(x+3\right)}{x^{2}+x+1}
Division durch x^{2}+x+1 macht die Multiplikation mit x^{2}+x+1 rückgängig.
kx^{2}+x^{2}+\left(k+3\right)x+k=0
Verwenden Sie das Distributivgesetz, um k+1 mit x^{2} zu multiplizieren.
kx^{2}+x^{2}+kx+3x+k=0
Verwenden Sie das Distributivgesetz, um k+3 mit x zu multiplizieren.
kx^{2}+kx+3x+k=-x^{2}
Subtrahieren Sie x^{2} von beiden Seiten. Jede Subtraktion von null ergibt ihre Negation.
kx^{2}+kx+k=-x^{2}-3x
Subtrahieren Sie 3x von beiden Seiten.
\left(x^{2}+x+1\right)k=-x^{2}-3x
Kombinieren Sie alle Terme, die k enthalten.
\frac{\left(x^{2}+x+1\right)k}{x^{2}+x+1}=-\frac{x\left(x+3\right)}{x^{2}+x+1}
Dividieren Sie beide Seiten durch x^{2}+x+1.
k=-\frac{x\left(x+3\right)}{x^{2}+x+1}
Division durch x^{2}+x+1 macht die Multiplikation mit x^{2}+x+1 rückgängig.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}