Nach k auflösen
k=6
Teilen
In die Zwischenablage kopiert
16-4\left(-1\right)\left(-k+2\right)=0
Potenzieren Sie -4 mit 2, und erhalten Sie 16.
16-\left(-4\left(-k+2\right)\right)=0
Multiplizieren Sie 4 und -1, um -4 zu erhalten.
16+4\left(-k+2\right)=0
Das Gegenteil von -4\left(-k+2\right) ist 4\left(-k+2\right).
16+4\left(-k\right)+8=0
Verwenden Sie das Distributivgesetz, um 4 mit -k+2 zu multiplizieren.
24+4\left(-k\right)=0
Addieren Sie 16 und 8, um 24 zu erhalten.
4\left(-k\right)=-24
Subtrahieren Sie 24 von beiden Seiten. Jede Subtraktion von null ergibt ihre Negation.
-k=\frac{-24}{4}
Dividieren Sie beide Seiten durch 4.
-k=-6
Dividieren Sie -24 durch 4, um -6 zu erhalten.
k=6
Multiplizieren Sie beide Seiten mit -1.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}