Direkt zum Inhalt
Auswerten
Tick mark Image
Faktorisieren
Tick mark Image
Diagramm

Ähnliche Aufgaben aus Websuche

Teilen

-1+x+4x^{2}-3x^{3}-1
Kombinieren Sie -3x und 4x, um x zu erhalten.
-2+x+4x^{2}-3x^{3}
Subtrahieren Sie 1 von -1, um -2 zu erhalten.
-3x^{3}+4x^{2}+x-2
Multiplizieren Sie und kombinieren Sie ähnliche Terme.
\left(3x+2\right)\left(-x^{2}+2x-1\right)
Laut dem Satz über rationale Nullstellen (Rational Root Theorem) haben alle rationalen Nullstellen eines Polynoms die Form \frac{p}{q}, wobei der konstante Ausdruck -2 durch p dividiert wird und der Leitkoeffizient -3 durch q. Eine solche Wurzel ist -\frac{2}{3}. Faktorisieren Sie das Polynom, indem Sie es durch 3x+2 teilen.
a+b=2 ab=-\left(-1\right)=1
Betrachten Sie -x^{2}+2x-1. Faktorisieren Sie den Ausdruck durch Gruppieren. Zuerst muss der Ausdruck als -x^{2}+ax+bx-1 umgeschrieben werden. Um a und b zu finden, stellen Sie ein zu lösendes System auf.
a=1 b=1
Weil ab positiv ist, haben a und b dasselbe Vorzeichen. Weil a+b positiv ist, sind a und b beide positiv. Das einzige derartige Paar ist die Lösung des Systems.
\left(-x^{2}+x\right)+\left(x-1\right)
-x^{2}+2x-1 als \left(-x^{2}+x\right)+\left(x-1\right) umschreiben.
-x\left(x-1\right)+x-1
Klammern Sie -x in -x^{2}+x aus.
\left(x-1\right)\left(-x+1\right)
Klammern Sie den gemeinsamen Term x-1 aus, indem Sie die distributive Eigenschaft verwenden.
\left(x-1\right)\left(-x+1\right)\left(3x+2\right)
Schreiben Sie den vollständigen, faktorisierten Ausdruck um.