Auswerten
-2\sqrt{22}\approx -9,38083152
Erweitern
-2\sqrt{22}
Teilen
In die Zwischenablage kopiert
\left(\sqrt{11}\right)^{2}-2\sqrt{11}\sqrt{2}+\left(\sqrt{2}\right)^{2}-13
\left(\sqrt{11}-\sqrt{2}\right)^{2} mit dem binomischen Lehrsatz "\left(a-b\right)^{2}=a^{2}-2ab+b^{2}" erweitern.
11-2\sqrt{11}\sqrt{2}+\left(\sqrt{2}\right)^{2}-13
Das Quadrat von \sqrt{11} ist 11.
11-2\sqrt{22}+\left(\sqrt{2}\right)^{2}-13
Um \sqrt{11} und \sqrt{2} zu multiplizieren, multiplizieren Sie die Zahlen unter der Quadratwurzel.
11-2\sqrt{22}+2-13
Das Quadrat von \sqrt{2} ist 2.
13-2\sqrt{22}-13
Addieren Sie 11 und 2, um 13 zu erhalten.
-2\sqrt{22}
Subtrahieren Sie 13 von 13, um 0 zu erhalten.
\left(\sqrt{11}\right)^{2}-2\sqrt{11}\sqrt{2}+\left(\sqrt{2}\right)^{2}-13
\left(\sqrt{11}-\sqrt{2}\right)^{2} mit dem binomischen Lehrsatz "\left(a-b\right)^{2}=a^{2}-2ab+b^{2}" erweitern.
11-2\sqrt{11}\sqrt{2}+\left(\sqrt{2}\right)^{2}-13
Das Quadrat von \sqrt{11} ist 11.
11-2\sqrt{22}+\left(\sqrt{2}\right)^{2}-13
Um \sqrt{11} und \sqrt{2} zu multiplizieren, multiplizieren Sie die Zahlen unter der Quadratwurzel.
11-2\sqrt{22}+2-13
Das Quadrat von \sqrt{2} ist 2.
13-2\sqrt{22}-13
Addieren Sie 11 und 2, um 13 zu erhalten.
-2\sqrt{22}
Subtrahieren Sie 13 von 13, um 0 zu erhalten.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}