Direkt zum Inhalt
Auswerten
Tick mark Image
Erweitern
Tick mark Image

Ähnliche Aufgaben aus Websuche

Teilen

\frac{1}{2}x\times \frac{1}{2}x+\frac{1}{2}x\times \frac{2}{3}y+\frac{1}{2}x\left(-\frac{3}{4}\right)-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y\times \frac{2}{3}y-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Wenden Sie das Distributivgesetz an, indem Sie jeden Term von \frac{1}{2}x-\frac{2}{3}y+\frac{3}{4} mit jedem Term von \frac{1}{2}x+\frac{2}{3}y-\frac{3}{4} multiplizieren.
\frac{1}{2}x^{2}\times \frac{1}{2}+\frac{1}{2}x\times \frac{2}{3}y+\frac{1}{2}x\left(-\frac{3}{4}\right)-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y\times \frac{2}{3}y-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Multiplizieren Sie x und x, um x^{2} zu erhalten.
\frac{1}{2}x^{2}\times \frac{1}{2}+\frac{1}{2}x\times \frac{2}{3}y+\frac{1}{2}x\left(-\frac{3}{4}\right)-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Multiplizieren Sie y und y, um y^{2} zu erhalten.
\frac{1\times 1}{2\times 2}x^{2}+\frac{1}{2}x\times \frac{2}{3}y+\frac{1}{2}x\left(-\frac{3}{4}\right)-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Multiplizieren Sie \frac{1}{2} mit \frac{1}{2}, indem Sie den Zähler mit dem Zähler und den Nenner mit dem Nenner multiplizieren.
\frac{1}{4}x^{2}+\frac{1}{2}x\times \frac{2}{3}y+\frac{1}{2}x\left(-\frac{3}{4}\right)-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Führen Sie die Multiplikationen im Bruch \frac{1\times 1}{2\times 2} aus.
\frac{1}{4}x^{2}+\frac{1\times 2}{2\times 3}xy+\frac{1}{2}x\left(-\frac{3}{4}\right)-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Multiplizieren Sie \frac{1}{2} mit \frac{2}{3}, indem Sie den Zähler mit dem Zähler und den Nenner mit dem Nenner multiplizieren.
\frac{1}{4}x^{2}+\frac{1}{3}xy+\frac{1}{2}x\left(-\frac{3}{4}\right)-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Heben Sie 2 sowohl im Zähler als auch im Nenner auf.
\frac{1}{4}x^{2}+\frac{1}{3}xy+\frac{1\left(-3\right)}{2\times 4}x-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Multiplizieren Sie \frac{1}{2} mit -\frac{3}{4}, indem Sie den Zähler mit dem Zähler und den Nenner mit dem Nenner multiplizieren.
\frac{1}{4}x^{2}+\frac{1}{3}xy+\frac{-3}{8}x-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Führen Sie die Multiplikationen im Bruch \frac{1\left(-3\right)}{2\times 4} aus.
\frac{1}{4}x^{2}+\frac{1}{3}xy-\frac{3}{8}x-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Der Bruch \frac{-3}{8} kann als -\frac{3}{8} umgeschrieben werden, indem das negative Vorzeichen extrahiert wird.
\frac{1}{4}x^{2}+\frac{1}{3}xy-\frac{3}{8}x+\frac{-2}{3\times 2}yx-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Multiplizieren Sie -\frac{2}{3} mit \frac{1}{2}, indem Sie den Zähler mit dem Zähler und den Nenner mit dem Nenner multiplizieren.
\frac{1}{4}x^{2}+\frac{1}{3}xy-\frac{3}{8}x+\frac{-2}{6}yx-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Führen Sie die Multiplikationen im Bruch \frac{-2}{3\times 2} aus.
\frac{1}{4}x^{2}+\frac{1}{3}xy-\frac{3}{8}x-\frac{1}{3}yx-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Verringern Sie den Bruch \frac{-2}{6} um den niedrigsten Term, indem Sie 2 extrahieren und aufheben.
\frac{1}{4}x^{2}-\frac{3}{8}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Kombinieren Sie \frac{1}{3}xy und -\frac{1}{3}yx, um 0 zu erhalten.
\frac{1}{4}x^{2}-\frac{3}{8}x+\frac{-2\times 2}{3\times 3}y^{2}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Multiplizieren Sie -\frac{2}{3} mit \frac{2}{3}, indem Sie den Zähler mit dem Zähler und den Nenner mit dem Nenner multiplizieren.
\frac{1}{4}x^{2}-\frac{3}{8}x+\frac{-4}{9}y^{2}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Führen Sie die Multiplikationen im Bruch \frac{-2\times 2}{3\times 3} aus.
\frac{1}{4}x^{2}-\frac{3}{8}x-\frac{4}{9}y^{2}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Der Bruch \frac{-4}{9} kann als -\frac{4}{9} umgeschrieben werden, indem das negative Vorzeichen extrahiert wird.
\frac{1}{4}x^{2}-\frac{3}{8}x-\frac{4}{9}y^{2}+\frac{-2\left(-3\right)}{3\times 4}y+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Multiplizieren Sie -\frac{2}{3} mit -\frac{3}{4}, indem Sie den Zähler mit dem Zähler und den Nenner mit dem Nenner multiplizieren.
\frac{1}{4}x^{2}-\frac{3}{8}x-\frac{4}{9}y^{2}+\frac{6}{12}y+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Führen Sie die Multiplikationen im Bruch \frac{-2\left(-3\right)}{3\times 4} aus.
\frac{1}{4}x^{2}-\frac{3}{8}x-\frac{4}{9}y^{2}+\frac{1}{2}y+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Verringern Sie den Bruch \frac{6}{12} um den niedrigsten Term, indem Sie 6 extrahieren und aufheben.
\frac{1}{4}x^{2}-\frac{3}{8}x-\frac{4}{9}y^{2}+\frac{1}{2}y+\frac{3\times 1}{4\times 2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Multiplizieren Sie \frac{3}{4} mit \frac{1}{2}, indem Sie den Zähler mit dem Zähler und den Nenner mit dem Nenner multiplizieren.
\frac{1}{4}x^{2}-\frac{3}{8}x-\frac{4}{9}y^{2}+\frac{1}{2}y+\frac{3}{8}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Führen Sie die Multiplikationen im Bruch \frac{3\times 1}{4\times 2} aus.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+\frac{1}{2}y+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Kombinieren Sie -\frac{3}{8}x und \frac{3}{8}x, um 0 zu erhalten.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+\frac{1}{2}y+\frac{3\times 2}{4\times 3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Multiplizieren Sie \frac{3}{4} mit \frac{2}{3}, indem Sie den Zähler mit dem Zähler und den Nenner mit dem Nenner multiplizieren.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+\frac{1}{2}y+\frac{2}{4}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Heben Sie 3 sowohl im Zähler als auch im Nenner auf.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+\frac{1}{2}y+\frac{1}{2}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Verringern Sie den Bruch \frac{2}{4} um den niedrigsten Term, indem Sie 2 extrahieren und aufheben.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+y+\frac{3}{4}\left(-\frac{3}{4}\right)
Kombinieren Sie \frac{1}{2}y und \frac{1}{2}y, um y zu erhalten.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+y+\frac{3\left(-3\right)}{4\times 4}
Multiplizieren Sie \frac{3}{4} mit -\frac{3}{4}, indem Sie den Zähler mit dem Zähler und den Nenner mit dem Nenner multiplizieren.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+y+\frac{-9}{16}
Führen Sie die Multiplikationen im Bruch \frac{3\left(-3\right)}{4\times 4} aus.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+y-\frac{9}{16}
Der Bruch \frac{-9}{16} kann als -\frac{9}{16} umgeschrieben werden, indem das negative Vorzeichen extrahiert wird.
\frac{1}{2}x\times \frac{1}{2}x+\frac{1}{2}x\times \frac{2}{3}y+\frac{1}{2}x\left(-\frac{3}{4}\right)-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y\times \frac{2}{3}y-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Wenden Sie das Distributivgesetz an, indem Sie jeden Term von \frac{1}{2}x-\frac{2}{3}y+\frac{3}{4} mit jedem Term von \frac{1}{2}x+\frac{2}{3}y-\frac{3}{4} multiplizieren.
\frac{1}{2}x^{2}\times \frac{1}{2}+\frac{1}{2}x\times \frac{2}{3}y+\frac{1}{2}x\left(-\frac{3}{4}\right)-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y\times \frac{2}{3}y-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Multiplizieren Sie x und x, um x^{2} zu erhalten.
\frac{1}{2}x^{2}\times \frac{1}{2}+\frac{1}{2}x\times \frac{2}{3}y+\frac{1}{2}x\left(-\frac{3}{4}\right)-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Multiplizieren Sie y und y, um y^{2} zu erhalten.
\frac{1\times 1}{2\times 2}x^{2}+\frac{1}{2}x\times \frac{2}{3}y+\frac{1}{2}x\left(-\frac{3}{4}\right)-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Multiplizieren Sie \frac{1}{2} mit \frac{1}{2}, indem Sie den Zähler mit dem Zähler und den Nenner mit dem Nenner multiplizieren.
\frac{1}{4}x^{2}+\frac{1}{2}x\times \frac{2}{3}y+\frac{1}{2}x\left(-\frac{3}{4}\right)-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Führen Sie die Multiplikationen im Bruch \frac{1\times 1}{2\times 2} aus.
\frac{1}{4}x^{2}+\frac{1\times 2}{2\times 3}xy+\frac{1}{2}x\left(-\frac{3}{4}\right)-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Multiplizieren Sie \frac{1}{2} mit \frac{2}{3}, indem Sie den Zähler mit dem Zähler und den Nenner mit dem Nenner multiplizieren.
\frac{1}{4}x^{2}+\frac{1}{3}xy+\frac{1}{2}x\left(-\frac{3}{4}\right)-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Heben Sie 2 sowohl im Zähler als auch im Nenner auf.
\frac{1}{4}x^{2}+\frac{1}{3}xy+\frac{1\left(-3\right)}{2\times 4}x-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Multiplizieren Sie \frac{1}{2} mit -\frac{3}{4}, indem Sie den Zähler mit dem Zähler und den Nenner mit dem Nenner multiplizieren.
\frac{1}{4}x^{2}+\frac{1}{3}xy+\frac{-3}{8}x-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Führen Sie die Multiplikationen im Bruch \frac{1\left(-3\right)}{2\times 4} aus.
\frac{1}{4}x^{2}+\frac{1}{3}xy-\frac{3}{8}x-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Der Bruch \frac{-3}{8} kann als -\frac{3}{8} umgeschrieben werden, indem das negative Vorzeichen extrahiert wird.
\frac{1}{4}x^{2}+\frac{1}{3}xy-\frac{3}{8}x+\frac{-2}{3\times 2}yx-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Multiplizieren Sie -\frac{2}{3} mit \frac{1}{2}, indem Sie den Zähler mit dem Zähler und den Nenner mit dem Nenner multiplizieren.
\frac{1}{4}x^{2}+\frac{1}{3}xy-\frac{3}{8}x+\frac{-2}{6}yx-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Führen Sie die Multiplikationen im Bruch \frac{-2}{3\times 2} aus.
\frac{1}{4}x^{2}+\frac{1}{3}xy-\frac{3}{8}x-\frac{1}{3}yx-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Verringern Sie den Bruch \frac{-2}{6} um den niedrigsten Term, indem Sie 2 extrahieren und aufheben.
\frac{1}{4}x^{2}-\frac{3}{8}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Kombinieren Sie \frac{1}{3}xy und -\frac{1}{3}yx, um 0 zu erhalten.
\frac{1}{4}x^{2}-\frac{3}{8}x+\frac{-2\times 2}{3\times 3}y^{2}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Multiplizieren Sie -\frac{2}{3} mit \frac{2}{3}, indem Sie den Zähler mit dem Zähler und den Nenner mit dem Nenner multiplizieren.
\frac{1}{4}x^{2}-\frac{3}{8}x+\frac{-4}{9}y^{2}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Führen Sie die Multiplikationen im Bruch \frac{-2\times 2}{3\times 3} aus.
\frac{1}{4}x^{2}-\frac{3}{8}x-\frac{4}{9}y^{2}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Der Bruch \frac{-4}{9} kann als -\frac{4}{9} umgeschrieben werden, indem das negative Vorzeichen extrahiert wird.
\frac{1}{4}x^{2}-\frac{3}{8}x-\frac{4}{9}y^{2}+\frac{-2\left(-3\right)}{3\times 4}y+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Multiplizieren Sie -\frac{2}{3} mit -\frac{3}{4}, indem Sie den Zähler mit dem Zähler und den Nenner mit dem Nenner multiplizieren.
\frac{1}{4}x^{2}-\frac{3}{8}x-\frac{4}{9}y^{2}+\frac{6}{12}y+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Führen Sie die Multiplikationen im Bruch \frac{-2\left(-3\right)}{3\times 4} aus.
\frac{1}{4}x^{2}-\frac{3}{8}x-\frac{4}{9}y^{2}+\frac{1}{2}y+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Verringern Sie den Bruch \frac{6}{12} um den niedrigsten Term, indem Sie 6 extrahieren und aufheben.
\frac{1}{4}x^{2}-\frac{3}{8}x-\frac{4}{9}y^{2}+\frac{1}{2}y+\frac{3\times 1}{4\times 2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Multiplizieren Sie \frac{3}{4} mit \frac{1}{2}, indem Sie den Zähler mit dem Zähler und den Nenner mit dem Nenner multiplizieren.
\frac{1}{4}x^{2}-\frac{3}{8}x-\frac{4}{9}y^{2}+\frac{1}{2}y+\frac{3}{8}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Führen Sie die Multiplikationen im Bruch \frac{3\times 1}{4\times 2} aus.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+\frac{1}{2}y+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Kombinieren Sie -\frac{3}{8}x und \frac{3}{8}x, um 0 zu erhalten.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+\frac{1}{2}y+\frac{3\times 2}{4\times 3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Multiplizieren Sie \frac{3}{4} mit \frac{2}{3}, indem Sie den Zähler mit dem Zähler und den Nenner mit dem Nenner multiplizieren.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+\frac{1}{2}y+\frac{2}{4}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Heben Sie 3 sowohl im Zähler als auch im Nenner auf.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+\frac{1}{2}y+\frac{1}{2}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Verringern Sie den Bruch \frac{2}{4} um den niedrigsten Term, indem Sie 2 extrahieren und aufheben.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+y+\frac{3}{4}\left(-\frac{3}{4}\right)
Kombinieren Sie \frac{1}{2}y und \frac{1}{2}y, um y zu erhalten.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+y+\frac{3\left(-3\right)}{4\times 4}
Multiplizieren Sie \frac{3}{4} mit -\frac{3}{4}, indem Sie den Zähler mit dem Zähler und den Nenner mit dem Nenner multiplizieren.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+y+\frac{-9}{16}
Führen Sie die Multiplikationen im Bruch \frac{3\left(-3\right)}{4\times 4} aus.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+y-\frac{9}{16}
Der Bruch \frac{-9}{16} kann als -\frac{9}{16} umgeschrieben werden, indem das negative Vorzeichen extrahiert wird.