Direkt zum Inhalt
Nach x auflösen
Tick mark Image
Diagramm

Ähnliche Aufgaben aus Websuche

Teilen

x^{2}-8x-1029=0
Alle Gleichungen der Form ax^{2}+bx+c=0 können mithilfe dieser quadratischen Gleichung gelöst werden: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Die quadratische Gleichung ergibt zwei Lösungen, eine für ± bei Addition und eine bei Subtraktion.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-1029\right)}}{2}
Diese Gleichung hat die Standardform: ax^{2}+bx+c=0. Ersetzen Sie in der quadratischen Gleichung a durch 1, b durch -8 und c durch -1029, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-1029\right)}}{2}
-8 zum Quadrat.
x=\frac{-\left(-8\right)±\sqrt{64+4116}}{2}
Multiplizieren Sie -4 mit -1029.
x=\frac{-\left(-8\right)±\sqrt{4180}}{2}
Addieren Sie 64 zu 4116.
x=\frac{-\left(-8\right)±2\sqrt{1045}}{2}
Ziehen Sie die Quadratwurzel aus 4180.
x=\frac{8±2\sqrt{1045}}{2}
Das Gegenteil von -8 ist 8.
x=\frac{2\sqrt{1045}+8}{2}
Lösen Sie jetzt die Gleichung x=\frac{8±2\sqrt{1045}}{2}, wenn ± positiv ist. Addieren Sie 8 zu 2\sqrt{1045}.
x=\sqrt{1045}+4
Dividieren Sie 8+2\sqrt{1045} durch 2.
x=\frac{8-2\sqrt{1045}}{2}
Lösen Sie jetzt die Gleichung x=\frac{8±2\sqrt{1045}}{2}, wenn ± negativ ist. Subtrahieren Sie 2\sqrt{1045} von 8.
x=4-\sqrt{1045}
Dividieren Sie 8-2\sqrt{1045} durch 2.
x=\sqrt{1045}+4 x=4-\sqrt{1045}
Die Gleichung ist jetzt gelöst.
x^{2}-8x-1029=0
Quadratische Gleichungen wie diese können durch quadratische Ergänzung gelöst werden. Für die Anwendung der quadratischen Ergänzung muss die Gleichung zuerst in die Form x^{2}+bx=c gebracht werden.
x^{2}-8x-1029-\left(-1029\right)=-\left(-1029\right)
Addieren Sie 1029 zu beiden Seiten der Gleichung.
x^{2}-8x=-\left(-1029\right)
Die Subtraktion von -1029 von sich selbst ergibt 0.
x^{2}-8x=1029
Subtrahieren Sie -1029 von 0.
x^{2}-8x+\left(-4\right)^{2}=1029+\left(-4\right)^{2}
Dividieren Sie -8, den Koeffizienten des Terms x, durch 2, um -4 zu erhalten. Addieren Sie dann das Quadrat von -4 zu beiden Seiten der Gleichung. Dieser Schritt macht die linke Seite der Gleichung zu einem perfekten Quadrat.
x^{2}-8x+16=1029+16
-4 zum Quadrat.
x^{2}-8x+16=1045
Addieren Sie 1029 zu 16.
\left(x-4\right)^{2}=1045
Faktor x^{2}-8x+16. Wenn x^{2}+bx+c ein perfektes Quadrat ist, kann es im Allgemeinen immer als \left(x+\frac{b}{2}\right)^{2} faktorisieren.
\sqrt{\left(x-4\right)^{2}}=\sqrt{1045}
Ziehen Sie die Quadratwurzel beider Seiten der Gleichung.
x-4=\sqrt{1045} x-4=-\sqrt{1045}
Vereinfachen.
x=\sqrt{1045}+4 x=4-\sqrt{1045}
Addieren Sie 4 zu beiden Seiten der Gleichung.