Direkt zum Inhalt
Nach x auflösen (komplexe Lösung)
Tick mark Image
Nach x auflösen
Tick mark Image
Diagramm

Ähnliche Aufgaben aus Websuche

Teilen

x^{2}+2x+4=8
Alle Gleichungen der Form ax^{2}+bx+c=0 können mithilfe dieser quadratischen Gleichung gelöst werden: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Die quadratische Gleichung ergibt zwei Lösungen, eine für ± bei Addition und eine bei Subtraktion.
x^{2}+2x+4-8=8-8
8 von beiden Seiten der Gleichung subtrahieren.
x^{2}+2x+4-8=0
Die Subtraktion von 8 von sich selbst ergibt 0.
x^{2}+2x-4=0
Subtrahieren Sie 8 von 4.
x=\frac{-2±\sqrt{2^{2}-4\left(-4\right)}}{2}
Diese Gleichung hat die Standardform: ax^{2}+bx+c=0. Ersetzen Sie in der quadratischen Gleichung a durch 1, b durch 2 und c durch -4, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-4\right)}}{2}
2 zum Quadrat.
x=\frac{-2±\sqrt{4+16}}{2}
Multiplizieren Sie -4 mit -4.
x=\frac{-2±\sqrt{20}}{2}
Addieren Sie 4 zu 16.
x=\frac{-2±2\sqrt{5}}{2}
Ziehen Sie die Quadratwurzel aus 20.
x=\frac{2\sqrt{5}-2}{2}
Lösen Sie jetzt die Gleichung x=\frac{-2±2\sqrt{5}}{2}, wenn ± positiv ist. Addieren Sie -2 zu 2\sqrt{5}.
x=\sqrt{5}-1
Dividieren Sie -2+2\sqrt{5} durch 2.
x=\frac{-2\sqrt{5}-2}{2}
Lösen Sie jetzt die Gleichung x=\frac{-2±2\sqrt{5}}{2}, wenn ± negativ ist. Subtrahieren Sie 2\sqrt{5} von -2.
x=-\sqrt{5}-1
Dividieren Sie -2-2\sqrt{5} durch 2.
x=\sqrt{5}-1 x=-\sqrt{5}-1
Die Gleichung ist jetzt gelöst.
x^{2}+2x+4=8
Quadratische Gleichungen wie diese können durch quadratische Ergänzung gelöst werden. Für die Anwendung der quadratischen Ergänzung muss die Gleichung zuerst in die Form x^{2}+bx=c gebracht werden.
x^{2}+2x+4-4=8-4
4 von beiden Seiten der Gleichung subtrahieren.
x^{2}+2x=8-4
Die Subtraktion von 4 von sich selbst ergibt 0.
x^{2}+2x=4
Subtrahieren Sie 4 von 8.
x^{2}+2x+1^{2}=4+1^{2}
Dividieren Sie 2, den Koeffizienten des Terms x, durch 2, um 1 zu erhalten. Addieren Sie dann das Quadrat von 1 zu beiden Seiten der Gleichung. Dieser Schritt macht die linke Seite der Gleichung zu einem perfekten Quadrat.
x^{2}+2x+1=4+1
1 zum Quadrat.
x^{2}+2x+1=5
Addieren Sie 4 zu 1.
\left(x+1\right)^{2}=5
Faktor x^{2}+2x+1. Wenn x^{2}+bx+c ein perfektes Quadrat ist, kann es im Allgemeinen immer als \left(x+\frac{b}{2}\right)^{2} faktorisieren.
\sqrt{\left(x+1\right)^{2}}=\sqrt{5}
Ziehen Sie die Quadratwurzel beider Seiten der Gleichung.
x+1=\sqrt{5} x+1=-\sqrt{5}
Vereinfachen.
x=\sqrt{5}-1 x=-\sqrt{5}-1
1 von beiden Seiten der Gleichung subtrahieren.
x^{2}+2x+4=8
Alle Gleichungen der Form ax^{2}+bx+c=0 können mithilfe dieser quadratischen Gleichung gelöst werden: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Die quadratische Gleichung ergibt zwei Lösungen, eine für ± bei Addition und eine bei Subtraktion.
x^{2}+2x+4-8=8-8
8 von beiden Seiten der Gleichung subtrahieren.
x^{2}+2x+4-8=0
Die Subtraktion von 8 von sich selbst ergibt 0.
x^{2}+2x-4=0
Subtrahieren Sie 8 von 4.
x=\frac{-2±\sqrt{2^{2}-4\left(-4\right)}}{2}
Diese Gleichung hat die Standardform: ax^{2}+bx+c=0. Ersetzen Sie in der quadratischen Gleichung a durch 1, b durch 2 und c durch -4, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-4\right)}}{2}
2 zum Quadrat.
x=\frac{-2±\sqrt{4+16}}{2}
Multiplizieren Sie -4 mit -4.
x=\frac{-2±\sqrt{20}}{2}
Addieren Sie 4 zu 16.
x=\frac{-2±2\sqrt{5}}{2}
Ziehen Sie die Quadratwurzel aus 20.
x=\frac{2\sqrt{5}-2}{2}
Lösen Sie jetzt die Gleichung x=\frac{-2±2\sqrt{5}}{2}, wenn ± positiv ist. Addieren Sie -2 zu 2\sqrt{5}.
x=\sqrt{5}-1
Dividieren Sie -2+2\sqrt{5} durch 2.
x=\frac{-2\sqrt{5}-2}{2}
Lösen Sie jetzt die Gleichung x=\frac{-2±2\sqrt{5}}{2}, wenn ± negativ ist. Subtrahieren Sie 2\sqrt{5} von -2.
x=-\sqrt{5}-1
Dividieren Sie -2-2\sqrt{5} durch 2.
x=\sqrt{5}-1 x=-\sqrt{5}-1
Die Gleichung ist jetzt gelöst.
x^{2}+2x+4=8
Quadratische Gleichungen wie diese können durch quadratische Ergänzung gelöst werden. Für die Anwendung der quadratischen Ergänzung muss die Gleichung zuerst in die Form x^{2}+bx=c gebracht werden.
x^{2}+2x+4-4=8-4
4 von beiden Seiten der Gleichung subtrahieren.
x^{2}+2x=8-4
Die Subtraktion von 4 von sich selbst ergibt 0.
x^{2}+2x=4
Subtrahieren Sie 4 von 8.
x^{2}+2x+1^{2}=4+1^{2}
Dividieren Sie 2, den Koeffizienten des Terms x, durch 2, um 1 zu erhalten. Addieren Sie dann das Quadrat von 1 zu beiden Seiten der Gleichung. Dieser Schritt macht die linke Seite der Gleichung zu einem perfekten Quadrat.
x^{2}+2x+1=4+1
1 zum Quadrat.
x^{2}+2x+1=5
Addieren Sie 4 zu 1.
\left(x+1\right)^{2}=5
Faktor x^{2}+2x+1. Wenn x^{2}+bx+c ein perfektes Quadrat ist, kann es im Allgemeinen immer als \left(x+\frac{b}{2}\right)^{2} faktorisieren.
\sqrt{\left(x+1\right)^{2}}=\sqrt{5}
Ziehen Sie die Quadratwurzel beider Seiten der Gleichung.
x+1=\sqrt{5} x+1=-\sqrt{5}
Vereinfachen.
x=\sqrt{5}-1 x=-\sqrt{5}-1
1 von beiden Seiten der Gleichung subtrahieren.