Direkt zum Inhalt
Nach x auflösen
Tick mark Image
Diagramm

Ähnliche Aufgaben aus Websuche

Teilen

2x^{2}+1x+2x=5
Kombinieren Sie x^{2} und x^{2}, um 2x^{2} zu erhalten.
2x^{2}+3x=5
Kombinieren Sie 1x und 2x, um 3x zu erhalten.
2x^{2}+3x-5=0
Subtrahieren Sie 5 von beiden Seiten.
a+b=3 ab=2\left(-5\right)=-10
Um die Gleichung zu lösen, faktorisieren Sie die linke Seite durch Gruppieren. Zuerst muss die linke Seite als 2x^{2}+ax+bx-5 umgeschrieben werden. Um a und b zu finden, stellen Sie ein zu lösendes System auf.
-1,10 -2,5
Weil ab negativ ist, haben a und b entgegengesetzte Vorzeichen. Weil a+b positiv ist, hat die positive Zahl einen größeren Absolutwert als die negative. Alle ganzzahligen Paare auflisten, die das Produkt -10 ergeben.
-1+10=9 -2+5=3
Die Summe für jedes Paar berechnen.
a=-2 b=5
Die Lösung ist das Paar, das die Summe 3 ergibt.
\left(2x^{2}-2x\right)+\left(5x-5\right)
2x^{2}+3x-5 als \left(2x^{2}-2x\right)+\left(5x-5\right) umschreiben.
2x\left(x-1\right)+5\left(x-1\right)
Klammern Sie 2x in der ersten und 5 in der zweiten Gruppe aus.
\left(x-1\right)\left(2x+5\right)
Klammern Sie den gemeinsamen Term x-1 aus, indem Sie die distributive Eigenschaft verwenden.
x=1 x=-\frac{5}{2}
Um Lösungen für die Gleichungen zu finden, lösen Sie x-1=0 und 2x+5=0.
2x^{2}+1x+2x=5
Kombinieren Sie x^{2} und x^{2}, um 2x^{2} zu erhalten.
2x^{2}+3x=5
Kombinieren Sie 1x und 2x, um 3x zu erhalten.
2x^{2}+3x-5=0
Subtrahieren Sie 5 von beiden Seiten.
x=\frac{-3±\sqrt{3^{2}-4\times 2\left(-5\right)}}{2\times 2}
Diese Gleichung hat die Standardform: ax^{2}+bx+c=0. Ersetzen Sie in der quadratischen Gleichung a durch 2, b durch 3 und c durch -5, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 2\left(-5\right)}}{2\times 2}
3 zum Quadrat.
x=\frac{-3±\sqrt{9-8\left(-5\right)}}{2\times 2}
Multiplizieren Sie -4 mit 2.
x=\frac{-3±\sqrt{9+40}}{2\times 2}
Multiplizieren Sie -8 mit -5.
x=\frac{-3±\sqrt{49}}{2\times 2}
Addieren Sie 9 zu 40.
x=\frac{-3±7}{2\times 2}
Ziehen Sie die Quadratwurzel aus 49.
x=\frac{-3±7}{4}
Multiplizieren Sie 2 mit 2.
x=\frac{4}{4}
Lösen Sie jetzt die Gleichung x=\frac{-3±7}{4}, wenn ± positiv ist. Addieren Sie -3 zu 7.
x=1
Dividieren Sie 4 durch 4.
x=-\frac{10}{4}
Lösen Sie jetzt die Gleichung x=\frac{-3±7}{4}, wenn ± negativ ist. Subtrahieren Sie 7 von -3.
x=-\frac{5}{2}
Verringern Sie den Bruch \frac{-10}{4} um den niedrigsten Term, indem Sie 2 extrahieren und aufheben.
x=1 x=-\frac{5}{2}
Die Gleichung ist jetzt gelöst.
2x^{2}+1x+2x=5
Kombinieren Sie x^{2} und x^{2}, um 2x^{2} zu erhalten.
2x^{2}+3x=5
Kombinieren Sie 1x und 2x, um 3x zu erhalten.
\frac{2x^{2}+3x}{2}=\frac{5}{2}
Dividieren Sie beide Seiten durch 2.
x^{2}+\frac{3}{2}x=\frac{5}{2}
Division durch 2 macht die Multiplikation mit 2 rückgängig.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=\frac{5}{2}+\left(\frac{3}{4}\right)^{2}
Dividieren Sie \frac{3}{2}, den Koeffizienten des Terms x, durch 2, um \frac{3}{4} zu erhalten. Addieren Sie dann das Quadrat von \frac{3}{4} zu beiden Seiten der Gleichung. Dieser Schritt macht die linke Seite der Gleichung zu einem perfekten Quadrat.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{5}{2}+\frac{9}{16}
Bestimmen Sie das Quadrat von \frac{3}{4}, indem Sie das Quadrat des Zählers und das Quadrat des Nenners des Bruchs bilden.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{49}{16}
Addieren Sie \frac{5}{2} zu \frac{9}{16}, indem Sie einen gemeinsamen Nenner suchen und die Zähler addieren. Kürzen Sie anschließend den Bruch auf die kleinsten möglichen Terme.
\left(x+\frac{3}{4}\right)^{2}=\frac{49}{16}
Faktor x^{2}+\frac{3}{2}x+\frac{9}{16}. Wenn x^{2}+bx+c ein perfektes Quadrat ist, kann es im Allgemeinen immer als \left(x+\frac{b}{2}\right)^{2} faktorisieren.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Ziehen Sie die Quadratwurzel beider Seiten der Gleichung.
x+\frac{3}{4}=\frac{7}{4} x+\frac{3}{4}=-\frac{7}{4}
Vereinfachen.
x=1 x=-\frac{5}{2}
\frac{3}{4} von beiden Seiten der Gleichung subtrahieren.