Nach w auflösen
w=\frac{3+\sqrt{3}i}{2}\approx 1,5+0,866025404i
w=\frac{-\sqrt{3}i+3}{2}\approx 1,5-0,866025404i
Teilen
In die Zwischenablage kopiert
w^{2}=3w-3
Verwenden Sie das Distributivgesetz, um 3 mit w-1 zu multiplizieren.
w^{2}-3w=-3
Subtrahieren Sie 3w von beiden Seiten.
w^{2}-3w+3=0
Auf beiden Seiten 3 addieren.
w=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 3}}{2}
Diese Gleichung hat die Standardform: ax^{2}+bx+c=0. Ersetzen Sie in der quadratischen Gleichung a durch 1, b durch -3 und c durch 3, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{-\left(-3\right)±\sqrt{9-4\times 3}}{2}
-3 zum Quadrat.
w=\frac{-\left(-3\right)±\sqrt{9-12}}{2}
Multiplizieren Sie -4 mit 3.
w=\frac{-\left(-3\right)±\sqrt{-3}}{2}
Addieren Sie 9 zu -12.
w=\frac{-\left(-3\right)±\sqrt{3}i}{2}
Ziehen Sie die Quadratwurzel aus -3.
w=\frac{3±\sqrt{3}i}{2}
Das Gegenteil von -3 ist 3.
w=\frac{3+\sqrt{3}i}{2}
Lösen Sie jetzt die Gleichung w=\frac{3±\sqrt{3}i}{2}, wenn ± positiv ist. Addieren Sie 3 zu i\sqrt{3}.
w=\frac{-\sqrt{3}i+3}{2}
Lösen Sie jetzt die Gleichung w=\frac{3±\sqrt{3}i}{2}, wenn ± negativ ist. Subtrahieren Sie i\sqrt{3} von 3.
w=\frac{3+\sqrt{3}i}{2} w=\frac{-\sqrt{3}i+3}{2}
Die Gleichung ist jetzt gelöst.
w^{2}=3w-3
Verwenden Sie das Distributivgesetz, um 3 mit w-1 zu multiplizieren.
w^{2}-3w=-3
Subtrahieren Sie 3w von beiden Seiten.
w^{2}-3w+\left(-\frac{3}{2}\right)^{2}=-3+\left(-\frac{3}{2}\right)^{2}
Dividieren Sie -3, den Koeffizienten des Terms x, durch 2, um -\frac{3}{2} zu erhalten. Addieren Sie dann das Quadrat von -\frac{3}{2} zu beiden Seiten der Gleichung. Dieser Schritt macht die linke Seite der Gleichung zu einem perfekten Quadrat.
w^{2}-3w+\frac{9}{4}=-3+\frac{9}{4}
Bestimmen Sie das Quadrat von -\frac{3}{2}, indem Sie das Quadrat des Zählers und das Quadrat des Nenners des Bruchs bilden.
w^{2}-3w+\frac{9}{4}=-\frac{3}{4}
Addieren Sie -3 zu \frac{9}{4}.
\left(w-\frac{3}{2}\right)^{2}=-\frac{3}{4}
Faktor w^{2}-3w+\frac{9}{4}. Wenn x^{2}+bx+c ein perfektes Quadrat ist, kann es im Allgemeinen immer als \left(x+\frac{b}{2}\right)^{2} faktorisieren.
\sqrt{\left(w-\frac{3}{2}\right)^{2}}=\sqrt{-\frac{3}{4}}
Ziehen Sie die Quadratwurzel beider Seiten der Gleichung.
w-\frac{3}{2}=\frac{\sqrt{3}i}{2} w-\frac{3}{2}=-\frac{\sqrt{3}i}{2}
Vereinfachen.
w=\frac{3+\sqrt{3}i}{2} w=\frac{-\sqrt{3}i+3}{2}
Addieren Sie \frac{3}{2} zu beiden Seiten der Gleichung.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}