Direkt zum Inhalt
Nach x auflösen
Tick mark Image
Diagramm

Ähnliche Aufgaben aus Websuche

Teilen

5^{2x-6}=1
Verwenden Sie die Exponentialregeln und die Logarithmusregeln zum Lösen der Gleichung.
\log(5^{2x-6})=\log(1)
Erstellen Sie den Logarithmus von beiden Seiten der Gleichung.
\left(2x-6\right)\log(5)=\log(1)
Der Logarithmus einer potenzierten Zahl ist das Produkt aus dem Exponenten und dem Logarithmus der Zahl.
2x-6=\frac{\log(1)}{\log(5)}
Dividieren Sie beide Seiten durch \log(5).
2x-6=\log_{5}\left(1\right)
Durch die Formel zur Basisumrechnung \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
2x=-\left(-6\right)
Addieren Sie 6 zu beiden Seiten der Gleichung.
x=\frac{6}{2}
Dividieren Sie beide Seiten durch 2.