Nach z auflösen
z=\frac{4x}{\sqrt{4-x^{2}}+x}
x\neq -\sqrt{2}\text{ and }|x|<2
Nach x auflösen
\left\{\begin{matrix}x=-\sqrt{\frac{2}{z^{2}-4z+8}}z\text{, }&z=0\text{ or }z>4\\x=\sqrt{\frac{2}{z^{2}-4z+8}}z\text{, }&z<4\end{matrix}\right,
Teilen
In die Zwischenablage kopiert
4\left(\sqrt{\frac{1}{4-x^{2}}}\right)^{2}x^{2}-8\sqrt{\frac{1}{4-x^{2}}}x+4+z^{2}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
\left(-2\sqrt{\frac{1}{4-x^{2}}}x+2\right)^{2} mit dem binomischen Lehrsatz "\left(a+b\right)^{2}=a^{2}+2ab+b^{2}" erweitern.
4\times \frac{1}{4-x^{2}}x^{2}-8\sqrt{\frac{1}{4-x^{2}}}x+4+z^{2}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
Potenzieren Sie \sqrt{\frac{1}{4-x^{2}}} mit 2, und erhalten Sie \frac{1}{4-x^{2}}.
\frac{4}{4-x^{2}}x^{2}-8\sqrt{\frac{1}{4-x^{2}}}x+4+z^{2}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
Drücken Sie 4\times \frac{1}{4-x^{2}} als Einzelbruch aus.
\frac{4x^{2}}{4-x^{2}}-8\sqrt{\frac{1}{4-x^{2}}}x+4+z^{2}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
Drücken Sie \frac{4}{4-x^{2}}x^{2} als Einzelbruch aus.
\frac{4x^{2}}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x+4+z^{2}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
4-x^{2} faktorisieren.
\frac{4x^{2}}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x+\frac{4\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}+z^{2}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
Um Ausdrücke zu addieren oder subtrahieren, erweitern Sie sie, um ihre Nenner gleichnamig zu machen. Multiplizieren Sie 4 mit \frac{\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}.
\frac{4x^{2}+4\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x+z^{2}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
Da \frac{4x^{2}}{\left(x-2\right)\left(-x-2\right)} und \frac{4\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)} denselben Nenner haben, addieren Sie diese, indem Sie ihre Zähler addieren.
\frac{4x^{2}-4x^{2}-8x+8x+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x+z^{2}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
Führen Sie die Multiplikationen als "4x^{2}+4\left(x-2\right)\left(-x-2\right)" aus.
\frac{16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x+z^{2}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
Ähnliche Terme in 4x^{2}-4x^{2}-8x+8x+16 kombinieren.
\frac{16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x+\frac{z^{2}\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
Um Ausdrücke zu addieren oder subtrahieren, erweitern Sie sie, um ihre Nenner gleichnamig zu machen. Multiplizieren Sie z^{2} mit \frac{\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}.
\frac{16+z^{2}\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
Da \frac{16}{\left(x-2\right)\left(-x-2\right)} und \frac{z^{2}\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)} denselben Nenner haben, addieren Sie diese, indem Sie ihre Zähler addieren.
\frac{16-z^{2}x^{2}-2z^{2}x+2z^{2}x+4z^{2}}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
Führen Sie die Multiplikationen als "16+z^{2}\left(x-2\right)\left(-x-2\right)" aus.
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
Ähnliche Terme in 16-z^{2}x^{2}-2z^{2}x+2z^{2}x+4z^{2} kombinieren.
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=\left(2-z+2\sqrt{\frac{1}{4-x^{2}}}x\right)^{2}
Subtrahieren Sie 2 von 4, um 2 zu erhalten.
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=z^{2}-4\sqrt{\frac{1}{-x^{2}+4}}xz-4z+4\left(\sqrt{\frac{1}{-x^{2}+4}}\right)^{2}x^{2}+8\sqrt{\frac{1}{-x^{2}+4}}x+4
2-z+2\sqrt{\frac{1}{4-x^{2}}}x zum Quadrat.
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=z^{2}-4\sqrt{\frac{1}{-x^{2}+4}}xz-4z+4\times \frac{1}{-x^{2}+4}x^{2}+8\sqrt{\frac{1}{-x^{2}+4}}x+4
Potenzieren Sie \sqrt{\frac{1}{-x^{2}+4}} mit 2, und erhalten Sie \frac{1}{-x^{2}+4}.
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=z^{2}-4\sqrt{\frac{1}{-x^{2}+4}}xz-4z+\frac{4}{-x^{2}+4}x^{2}+8\sqrt{\frac{1}{-x^{2}+4}}x+4
Drücken Sie 4\times \frac{1}{-x^{2}+4} als Einzelbruch aus.
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=z^{2}-4\sqrt{\frac{1}{-x^{2}+4}}xz-4z+\frac{4x^{2}}{-x^{2}+4}+8\sqrt{\frac{1}{-x^{2}+4}}x+4
Drücken Sie \frac{4}{-x^{2}+4}x^{2} als Einzelbruch aus.
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=z^{2}-4z+4-4\sqrt{\frac{1}{-x^{2}+4}}xz+\frac{4x^{2}}{\left(x-2\right)\left(-x-2\right)}+8\sqrt{\frac{1}{-x^{2}+4}}x
-x^{2}+4 faktorisieren.
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=\frac{\left(z^{2}-4z+4\right)\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}-4\sqrt{\frac{1}{-x^{2}+4}}xz+\frac{4x^{2}}{\left(x-2\right)\left(-x-2\right)}+8\sqrt{\frac{1}{-x^{2}+4}}x
Um Ausdrücke zu addieren oder subtrahieren, erweitern Sie sie, um ihre Nenner gleichnamig zu machen. Multiplizieren Sie z^{2}-4z+4 mit \frac{\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}.
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=\frac{\left(z^{2}-4z+4\right)\left(x-2\right)\left(-x-2\right)+4x^{2}}{\left(x-2\right)\left(-x-2\right)}-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
Da \frac{\left(z^{2}-4z+4\right)\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)} und \frac{4x^{2}}{\left(x-2\right)\left(-x-2\right)} denselben Nenner haben, addieren Sie diese, indem Sie ihre Zähler addieren.
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=\frac{4z^{2}-z^{2}x^{2}-16z+4zx^{2}-4x^{2}+16+4x^{2}}{\left(x-2\right)\left(-x-2\right)}-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
Führen Sie die Multiplikationen als "\left(z^{2}-4z+4\right)\left(x-2\right)\left(-x-2\right)+4x^{2}" aus.
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=\frac{16-z^{2}x^{2}+4z^{2}+4zx^{2}-16z}{\left(x-2\right)\left(-x-2\right)}-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
Ähnliche Terme in 4z^{2}-z^{2}x^{2}-16z+4zx^{2}-4x^{2}+16+4x^{2} kombinieren.
\frac{4z^{2}-z^{2}x^{2}+16}{-x^{2}+4}-8\sqrt{\frac{1}{4-x^{2}}}x=\frac{16-z^{2}x^{2}+4z^{2}+4zx^{2}-16z}{\left(x-2\right)\left(-x-2\right)}-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
Verwenden Sie das Distributivgesetz, um x-2 mit -x-2 zu multiplizieren und gleiche Terme zusammenzufassen.
\frac{4z^{2}-z^{2}x^{2}+16}{-x^{2}+4}-8\sqrt{\frac{1}{4-x^{2}}}x=\frac{16-z^{2}x^{2}+4z^{2}+4zx^{2}-16z}{-x^{2}+4}-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
Verwenden Sie das Distributivgesetz, um x-2 mit -x-2 zu multiplizieren und gleiche Terme zusammenzufassen.
\frac{4z^{2}-z^{2}x^{2}+16}{-x^{2}+4}-8\sqrt{\frac{1}{4-x^{2}}}x-\frac{16-z^{2}x^{2}+4z^{2}+4zx^{2}-16z}{-x^{2}+4}=-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
Subtrahieren Sie \frac{16-z^{2}x^{2}+4z^{2}+4zx^{2}-16z}{-x^{2}+4} von beiden Seiten.
\frac{4z^{2}-z^{2}x^{2}+16-\left(16-z^{2}x^{2}+4z^{2}+4zx^{2}-16z\right)}{-x^{2}+4}-8\sqrt{\frac{1}{4-x^{2}}}x=-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
Da \frac{4z^{2}-z^{2}x^{2}+16}{-x^{2}+4} und \frac{16-z^{2}x^{2}+4z^{2}+4zx^{2}-16z}{-x^{2}+4} denselben Nenner haben, subtrahieren Sie diese, indem Sie ihre Zähler subtrahieren.
\frac{4z^{2}-z^{2}x^{2}+16-16+z^{2}x^{2}-4z^{2}-4zx^{2}+16z}{-x^{2}+4}-8\sqrt{\frac{1}{4-x^{2}}}x=-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
Führen Sie die Multiplikationen als "4z^{2}-z^{2}x^{2}+16-\left(16-z^{2}x^{2}+4z^{2}+4zx^{2}-16z\right)" aus.
\frac{16z-4zx^{2}}{-x^{2}+4}-8\sqrt{\frac{1}{4-x^{2}}}x=-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
Ähnliche Terme in 4z^{2}-z^{2}x^{2}+16-16+z^{2}x^{2}-4z^{2}-4zx^{2}+16z kombinieren.
\frac{4z\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
Faktorisieren Sie die Ausdrücke, die noch nicht in \frac{16z-4zx^{2}}{-x^{2}+4} faktorisiert sind.
4z-8\sqrt{\frac{1}{4-x^{2}}}x=-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
Heben Sie \left(x-2\right)\left(-x-2\right) sowohl im Zähler als auch im Nenner auf.
4z-8\sqrt{\frac{1}{4-x^{2}}}x+4\sqrt{\frac{1}{-x^{2}+4}}xz=8\sqrt{\frac{1}{-x^{2}+4}}x
Auf beiden Seiten 4\sqrt{\frac{1}{-x^{2}+4}}xz addieren.
4z+4\sqrt{\frac{1}{-x^{2}+4}}xz=8\sqrt{\frac{1}{-x^{2}+4}}x+8\sqrt{\frac{1}{4-x^{2}}}x
Auf beiden Seiten 8\sqrt{\frac{1}{4-x^{2}}}x addieren.
4z+4\sqrt{\frac{1}{-x^{2}+4}}xz=16\sqrt{\frac{1}{-x^{2}+4}}x
Kombinieren Sie 8\sqrt{\frac{1}{-x^{2}+4}}x und 8\sqrt{\frac{1}{4-x^{2}}}x, um 16\sqrt{\frac{1}{-x^{2}+4}}x zu erhalten.
\left(4+4\sqrt{\frac{1}{-x^{2}+4}}x\right)z=16\sqrt{\frac{1}{-x^{2}+4}}x
Kombinieren Sie alle Terme, die z enthalten.
\left(4\sqrt{\frac{1}{4-x^{2}}}x+4\right)z=16\sqrt{\frac{1}{4-x^{2}}}x
Die Gleichung weist die Standardform auf.
\frac{\left(4\sqrt{\frac{1}{4-x^{2}}}x+4\right)z}{4\sqrt{\frac{1}{4-x^{2}}}x+4}=\frac{16x}{\sqrt{4-x^{2}}\left(4\sqrt{\frac{1}{4-x^{2}}}x+4\right)}
Dividieren Sie beide Seiten durch 4+4\sqrt{\left(-x^{2}+4\right)^{-1}}x.
z=\frac{16x}{\sqrt{4-x^{2}}\left(4\sqrt{\frac{1}{4-x^{2}}}x+4\right)}
Division durch 4+4\sqrt{\left(-x^{2}+4\right)^{-1}}x macht die Multiplikation mit 4+4\sqrt{\left(-x^{2}+4\right)^{-1}}x rückgängig.
z=\frac{4x}{\sqrt{4-x^{2}}+x}
Dividieren Sie \frac{16x}{\sqrt{4-x^{2}}} durch 4+4\sqrt{\left(-x^{2}+4\right)^{-1}}x.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}