Nach E auflösen
\left\{\begin{matrix}E=\frac{\pi \left(\sigma _{1}-v\sigma _{3}-v\sigma _{2}\right)}{\epsilon }\text{, }&\sigma _{1}\neq v\left(\sigma _{2}+\sigma _{3}\right)\text{ and }\epsilon \neq 0\text{ and }\sigma _{1}\neq v\sigma _{2}+v\sigma _{3}\\E\neq 0\text{, }&\epsilon =0\text{ and }\sigma _{1}=v\left(\sigma _{2}+\sigma _{3}\right)\end{matrix}\right,
Nach v auflösen
\left\{\begin{matrix}v=\frac{\pi \sigma _{1}-E\epsilon }{\pi \left(\sigma _{2}+\sigma _{3}\right)}\text{, }&E\neq 0\text{ and }\sigma _{2}\neq -\sigma _{3}\\v\in \mathrm{R}\text{, }&\sigma _{1}=\frac{E\epsilon }{\pi }\text{ and }\sigma _{2}=-\sigma _{3}\text{ and }E\neq 0\end{matrix}\right,
Teilen
In die Zwischenablage kopiert
\epsilon E=\pi \left(\sigma _{1}-v\left(\sigma _{2}+\sigma _{3}\right)\right)
Die Variable E kann nicht gleich 0 sein, weil die Division durch null nicht definiert ist. Multiplizieren Sie beide Seiten der Gleichung mit E.
\epsilon E=\pi \left(\sigma _{1}-\left(v\sigma _{2}+v\sigma _{3}\right)\right)
Verwenden Sie das Distributivgesetz, um v mit \sigma _{2}+\sigma _{3} zu multiplizieren.
\epsilon E=\pi \left(\sigma _{1}-v\sigma _{2}-v\sigma _{3}\right)
Um das Gegenteil von "v\sigma _{2}+v\sigma _{3}" zu finden, suchen Sie nach dem Gegenteil jedes Terms.
\epsilon E=\pi \sigma _{1}-\pi v\sigma _{2}-\pi v\sigma _{3}
Verwenden Sie das Distributivgesetz, um \pi mit \sigma _{1}-v\sigma _{2}-v\sigma _{3} zu multiplizieren.
\epsilon E=\pi \sigma _{1}-\pi v\sigma _{3}-\pi v\sigma _{2}
Die Gleichung weist die Standardform auf.
\frac{\epsilon E}{\epsilon }=\frac{\pi \left(\sigma _{1}-v\sigma _{3}-v\sigma _{2}\right)}{\epsilon }
Dividieren Sie beide Seiten durch \epsilon .
E=\frac{\pi \left(\sigma _{1}-v\sigma _{3}-v\sigma _{2}\right)}{\epsilon }
Division durch \epsilon macht die Multiplikation mit \epsilon rückgängig.
E=\frac{\pi \left(\sigma _{1}-v\sigma _{3}-v\sigma _{2}\right)}{\epsilon }\text{, }E\neq 0
Die Variable E kann nicht gleich 0 sein.
\epsilon E=\pi \left(\sigma _{1}-v\left(\sigma _{2}+\sigma _{3}\right)\right)
Multiplizieren Sie beide Seiten der Gleichung mit E.
\epsilon E=\pi \left(\sigma _{1}-\left(v\sigma _{2}+v\sigma _{3}\right)\right)
Verwenden Sie das Distributivgesetz, um v mit \sigma _{2}+\sigma _{3} zu multiplizieren.
\epsilon E=\pi \left(\sigma _{1}-v\sigma _{2}-v\sigma _{3}\right)
Um das Gegenteil von "v\sigma _{2}+v\sigma _{3}" zu finden, suchen Sie nach dem Gegenteil jedes Terms.
\epsilon E=\pi \sigma _{1}-\pi v\sigma _{2}-\pi v\sigma _{3}
Verwenden Sie das Distributivgesetz, um \pi mit \sigma _{1}-v\sigma _{2}-v\sigma _{3} zu multiplizieren.
\pi \sigma _{1}-\pi v\sigma _{2}-\pi v\sigma _{3}=\epsilon E
Seiten vertauschen, damit alle Terme mit Variablen auf der linken Seite sind.
-\pi v\sigma _{2}-\pi v\sigma _{3}=\epsilon E-\pi \sigma _{1}
Subtrahieren Sie \pi \sigma _{1} von beiden Seiten.
-\pi v\sigma _{2}-\pi v\sigma _{3}=E\epsilon -\pi \sigma _{1}
Ordnen Sie die Terme neu an.
\left(-\pi \sigma _{2}-\pi \sigma _{3}\right)v=E\epsilon -\pi \sigma _{1}
Kombinieren Sie alle Terme, die v enthalten.
\frac{\left(-\pi \sigma _{2}-\pi \sigma _{3}\right)v}{-\pi \sigma _{2}-\pi \sigma _{3}}=\frac{E\epsilon -\pi \sigma _{1}}{-\pi \sigma _{2}-\pi \sigma _{3}}
Dividieren Sie beide Seiten durch -\pi \sigma _{2}-\pi \sigma _{3}.
v=\frac{E\epsilon -\pi \sigma _{1}}{-\pi \sigma _{2}-\pi \sigma _{3}}
Division durch -\pi \sigma _{2}-\pi \sigma _{3} macht die Multiplikation mit -\pi \sigma _{2}-\pi \sigma _{3} rückgängig.
v=\frac{E\epsilon -\pi \sigma _{1}}{-\pi \left(\sigma _{2}+\sigma _{3}\right)}
Dividieren Sie \epsilon E-\pi \sigma _{1} durch -\pi \sigma _{2}-\pi \sigma _{3}.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}