Direkt zum Inhalt
Nach x auflösen
Tick mark Image
Diagramm

Ähnliche Aufgaben aus Websuche

Teilen

\left(\sqrt{x+3}\right)^{2}=\left(\sqrt{1-x}\right)^{2}
Erheben Sie beide Seiten der Gleichung zum Quadrat.
x+3=\left(\sqrt{1-x}\right)^{2}
Potenzieren Sie \sqrt{x+3} mit 2, und erhalten Sie x+3.
x+3=1-x
Potenzieren Sie \sqrt{1-x} mit 2, und erhalten Sie 1-x.
x+3+x=1
Auf beiden Seiten x addieren.
2x+3=1
Kombinieren Sie x und x, um 2x zu erhalten.
2x=1-3
Subtrahieren Sie 3 von beiden Seiten.
2x=-2
Subtrahieren Sie 3 von 1, um -2 zu erhalten.
x=\frac{-2}{2}
Dividieren Sie beide Seiten durch 2.
x=-1
Dividieren Sie -2 durch 2, um -1 zu erhalten.
\sqrt{-1+3}=\sqrt{1-\left(-1\right)}
Ersetzen Sie x durch -1 in der Gleichung \sqrt{x+3}=\sqrt{1-x}.
2^{\frac{1}{2}}=2^{\frac{1}{2}}
Vereinfachen. Der Wert x=-1 entspricht der Formel.
x=-1
Formel \sqrt{x+3}=\sqrt{1-x} hat eine eigene Lösung.