Nach h_5 auflösen (komplexe Lösung)
\left\{\begin{matrix}h_{5}=-\frac{3\left(y-5\right)}{px}\text{, }&x\neq 0\text{ and }p\neq 0\\h_{5}\in \mathrm{C}\text{, }&\left(x=0\text{ or }p=0\right)\text{ and }y=5\end{matrix}\right,
Nach p auflösen (komplexe Lösung)
\left\{\begin{matrix}p=-\frac{3\left(y-5\right)}{h_{5}x}\text{, }&x\neq 0\text{ and }h_{5}\neq 0\\p\in \mathrm{C}\text{, }&\left(x=0\text{ or }h_{5}=0\right)\text{ and }y=5\end{matrix}\right,
Nach h_5 auflösen
\left\{\begin{matrix}h_{5}=-\frac{3\left(y-5\right)}{px}\text{, }&x\neq 0\text{ and }p\neq 0\\h_{5}\in \mathrm{R}\text{, }&\left(x=0\text{ or }p=0\right)\text{ and }y=5\end{matrix}\right,
Nach p auflösen
\left\{\begin{matrix}p=-\frac{3\left(y-5\right)}{h_{5}x}\text{, }&x\neq 0\text{ and }h_{5}\neq 0\\p\in \mathrm{R}\text{, }&\left(x=0\text{ or }h_{5}=0\right)\text{ and }y=5\end{matrix}\right,
Diagramm
Teilen
In die Zwischenablage kopiert
ph_{5}x=15-3y
Subtrahieren Sie 3y von beiden Seiten.
pxh_{5}=15-3y
Die Gleichung weist die Standardform auf.
\frac{pxh_{5}}{px}=\frac{15-3y}{px}
Dividieren Sie beide Seiten durch px.
h_{5}=\frac{15-3y}{px}
Division durch px macht die Multiplikation mit px rückgängig.
h_{5}=\frac{3\left(5-y\right)}{px}
Dividieren Sie 15-3y durch px.
ph_{5}x=15-3y
Subtrahieren Sie 3y von beiden Seiten.
h_{5}xp=15-3y
Die Gleichung weist die Standardform auf.
\frac{h_{5}xp}{h_{5}x}=\frac{15-3y}{h_{5}x}
Dividieren Sie beide Seiten durch h_{5}x.
p=\frac{15-3y}{h_{5}x}
Division durch h_{5}x macht die Multiplikation mit h_{5}x rückgängig.
p=\frac{3\left(5-y\right)}{h_{5}x}
Dividieren Sie 15-3y durch h_{5}x.
ph_{5}x=15-3y
Subtrahieren Sie 3y von beiden Seiten.
pxh_{5}=15-3y
Die Gleichung weist die Standardform auf.
\frac{pxh_{5}}{px}=\frac{15-3y}{px}
Dividieren Sie beide Seiten durch px.
h_{5}=\frac{15-3y}{px}
Division durch px macht die Multiplikation mit px rückgängig.
h_{5}=\frac{3\left(5-y\right)}{px}
Dividieren Sie 15-3y durch px.
ph_{5}x=15-3y
Subtrahieren Sie 3y von beiden Seiten.
h_{5}xp=15-3y
Die Gleichung weist die Standardform auf.
\frac{h_{5}xp}{h_{5}x}=\frac{15-3y}{h_{5}x}
Dividieren Sie beide Seiten durch h_{5}x.
p=\frac{15-3y}{h_{5}x}
Division durch h_{5}x macht die Multiplikation mit h_{5}x rückgängig.
p=\frac{3\left(5-y\right)}{h_{5}x}
Dividieren Sie 15-3y durch h_{5}x.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}