Auswerten
\frac{2t^{2}x^{6}}{3}+С
W.r.t. x differenzieren
4t^{2}x^{5}
Teilen
In die Zwischenablage kopiert
\int x\times 2^{2}t^{2}\left(x^{2}\right)^{2}\mathrm{d}x
Erweitern Sie \left(2tx^{2}\right)^{2}.
\int x\times 2^{2}t^{2}x^{4}\mathrm{d}x
Um eine Potenz einer Zahl zu potenzieren, multiplizieren Sie die Exponenten. Multiplizieren Sie 2 mit 2, um 4 zu erhalten.
\int x\times 4t^{2}x^{4}\mathrm{d}x
Potenzieren Sie 2 mit 2, und erhalten Sie 4.
\int x^{5}\times 4t^{2}\mathrm{d}x
Um Potenzen mit derselben Basis zu multiplizieren, addieren Sie ihre Exponenten. Addieren Sie 1 und 4, um 5 zu erhalten.
4t^{2}\int x^{5}\mathrm{d}x
Ausklammern der Konstanten mithilfe von \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x
4t^{2}\times \frac{x^{6}}{6}
Wenn \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} für k\neq -1, ersetzen Sie \int x^{5}\mathrm{d}x durch \frac{x^{6}}{6}.
\frac{2t^{2}x^{6}}{3}
Vereinfachen.
\frac{2t^{2}x^{6}}{3}+С
Ist F\left(x\right) ein unbestimmtes Integral von f\left(x\right), wird die Menge aller unbestimmten Integrale von f\left(x\right) von F\left(x\right)+C angegeben. Fügen Sie deshalb die Konstante der Integralrechnung C\in \mathrm{R} zum Ergebnis hinzu.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}