Direkt zum Inhalt
Auswerten
Tick mark Image
W.r.t. x differenzieren
Tick mark Image

Ähnliche Aufgaben aus Websuche

Teilen

\int xft\mathrm{d}t
Werten Sie das bestimmte Integral zunächst aus.
xf\int t\mathrm{d}t
Ausklammern der Konstanten mithilfe von \int af\left(t\right)\mathrm{d}t=a\int f\left(t\right)\mathrm{d}t
xf\times \frac{t^{2}}{2}
Wenn \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} für k\neq -1, ersetzen Sie \int t\mathrm{d}t durch \frac{t^{2}}{2}.
\frac{xft^{2}}{2}
Vereinfachen.
\frac{1}{2}xfx^{2}-\frac{1}{2}xfa^{2}
Das bestimmte Integral ist der Wert des unbestimmten Integrals des Ausdrucks am oberen Grenzwert der Integralrechnung minus der Wert des unbestimmten Integrals am unteren Grenzwert der Integralrechnung.
\frac{xf\left(x-a\right)\left(x+a\right)}{2}
Vereinfachen.