Auswerten
117
Teilen
In die Zwischenablage kopiert
\int _{0}^{3}25x^{2}-30x+9\mathrm{d}x
\left(5x-3\right)^{2} mit dem binomischen Lehrsatz "\left(a-b\right)^{2}=a^{2}-2ab+b^{2}" erweitern.
\int 25x^{2}-30x+9\mathrm{d}x
Werten Sie das bestimmte Integral zunächst aus.
\int 25x^{2}\mathrm{d}x+\int -30x\mathrm{d}x+\int 9\mathrm{d}x
Summen-Ausdruck nach Ausdruck integrieren.
25\int x^{2}\mathrm{d}x-30\int x\mathrm{d}x+\int 9\mathrm{d}x
Klammern Sie die Konstanten in jedem Ausdruck aus.
\frac{25x^{3}}{3}-30\int x\mathrm{d}x+\int 9\mathrm{d}x
Wenn \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} für k\neq -1, ersetzen Sie \int x^{2}\mathrm{d}x durch \frac{x^{3}}{3}. Multiplizieren Sie 25 mit \frac{x^{3}}{3}.
\frac{25x^{3}}{3}-15x^{2}+\int 9\mathrm{d}x
Wenn \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} für k\neq -1, ersetzen Sie \int x\mathrm{d}x durch \frac{x^{2}}{2}. Multiplizieren Sie -30 mit \frac{x^{2}}{2}.
\frac{25x^{3}}{3}-15x^{2}+9x
Suchen Sie die Integral 9 mithilfe der Tabelle der allgemeinen von integralen Regel \int a\mathrm{d}x=ax.
\frac{25}{3}\times 3^{3}-15\times 3^{2}+9\times 3-\left(\frac{25}{3}\times 0^{3}-15\times 0^{2}+9\times 0\right)
Das bestimmte Integral ist der Wert des unbestimmten Integrals des Ausdrucks am oberen Grenzwert der Integralrechnung minus der Wert des unbestimmten Integrals am unteren Grenzwert der Integralrechnung.
117
Vereinfachen.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}