Direkt zum Inhalt
Auswerten
Tick mark Image

Ähnliche Aufgaben aus Websuche

Teilen

\int _{-2}^{5}16x^{2}-24x+9\mathrm{d}x
\left(4x-3\right)^{2} mit dem binomischen Lehrsatz "\left(a-b\right)^{2}=a^{2}-2ab+b^{2}" erweitern.
\int 16x^{2}-24x+9\mathrm{d}x
Werten Sie das bestimmte Integral zunächst aus.
\int 16x^{2}\mathrm{d}x+\int -24x\mathrm{d}x+\int 9\mathrm{d}x
Summen-Ausdruck nach Ausdruck integrieren.
16\int x^{2}\mathrm{d}x-24\int x\mathrm{d}x+\int 9\mathrm{d}x
Klammern Sie die Konstanten in jedem Ausdruck aus.
\frac{16x^{3}}{3}-24\int x\mathrm{d}x+\int 9\mathrm{d}x
Wenn \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} für k\neq -1, ersetzen Sie \int x^{2}\mathrm{d}x durch \frac{x^{3}}{3}. Multiplizieren Sie 16 mit \frac{x^{3}}{3}.
\frac{16x^{3}}{3}-12x^{2}+\int 9\mathrm{d}x
Wenn \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} für k\neq -1, ersetzen Sie \int x\mathrm{d}x durch \frac{x^{2}}{2}. Multiplizieren Sie -24 mit \frac{x^{2}}{2}.
\frac{16x^{3}}{3}-12x^{2}+9x
Suchen Sie die Integral 9 mithilfe der Tabelle der allgemeinen von integralen Regel \int a\mathrm{d}x=ax.
\frac{16}{3}\times 5^{3}-12\times 5^{2}+9\times 5-\left(\frac{16}{3}\left(-2\right)^{3}-12\left(-2\right)^{2}+9\left(-2\right)\right)
Das bestimmte Integral ist der Wert des unbestimmten Integrals des Ausdrucks am oberen Grenzwert der Integralrechnung minus der Wert des unbestimmten Integrals am unteren Grenzwert der Integralrechnung.
\frac{1561}{3}
Vereinfachen.