Direkt zum Inhalt
Auswerten
Tick mark Image
W.r.t. x differenzieren
Tick mark Image

Ähnliche Aufgaben aus Websuche

Teilen

\int x^{2}\mathrm{d}x+\int 6x\mathrm{d}x+\int 1\mathrm{d}x+\int 3x^{2}\mathrm{d}x+\int -4x\mathrm{d}x+\int 5\mathrm{d}x
Summen-Ausdruck nach Ausdruck integrieren.
\int x^{2}\mathrm{d}x+6\int x\mathrm{d}x+\int 1\mathrm{d}x+3\int x^{2}\mathrm{d}x-4\int x\mathrm{d}x+\int 5\mathrm{d}x
Klammern Sie die Konstanten in jedem Ausdruck aus.
\frac{x^{3}}{3}+6\int x\mathrm{d}x+\int 1\mathrm{d}x+3\int x^{2}\mathrm{d}x-4\int x\mathrm{d}x+\int 5\mathrm{d}x
Wenn \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} für k\neq -1, ersetzen Sie \int x^{2}\mathrm{d}x durch \frac{x^{3}}{3}.
\frac{x^{3}}{3}+3x^{2}+\int 1\mathrm{d}x+3\int x^{2}\mathrm{d}x-4\int x\mathrm{d}x+\int 5\mathrm{d}x
Wenn \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} für k\neq -1, ersetzen Sie \int x\mathrm{d}x durch \frac{x^{2}}{2}. Multiplizieren Sie 6 mit \frac{x^{2}}{2}.
\frac{x^{3}}{3}+3x^{2}+x+3\int x^{2}\mathrm{d}x-4\int x\mathrm{d}x+\int 5\mathrm{d}x
Suchen Sie die Integral 1 mithilfe der Tabelle der allgemeinen von integralen Regel \int a\mathrm{d}x=ax.
\frac{x^{3}}{3}+3x^{2}+x+x^{3}-4\int x\mathrm{d}x+\int 5\mathrm{d}x
Wenn \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} für k\neq -1, ersetzen Sie \int x^{2}\mathrm{d}x durch \frac{x^{3}}{3}. Multiplizieren Sie 3 mit \frac{x^{3}}{3}.
\frac{x^{3}}{3}+3x^{2}+x+x^{3}-2x^{2}+\int 5\mathrm{d}x
Wenn \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} für k\neq -1, ersetzen Sie \int x\mathrm{d}x durch \frac{x^{2}}{2}. Multiplizieren Sie -4 mit \frac{x^{2}}{2}.
\frac{x^{3}}{3}+3x^{2}+x+x^{3}-2x^{2}+5x
Suchen Sie die Integral 5 mithilfe der Tabelle der allgemeinen von integralen Regel \int a\mathrm{d}x=ax.
\frac{4x^{3}}{3}+x^{2}+6x
Vereinfachen.
\frac{4x^{3}}{3}+x^{2}+6x+С
Ist F\left(x\right) ein unbestimmtes Integral von f\left(x\right), wird die Menge aller unbestimmten Integrale von f\left(x\right) von F\left(x\right)+C angegeben. Fügen Sie deshalb die Konstante der Integralrechnung C\in \mathrm{R} zum Ergebnis hinzu.