Direkt zum Inhalt
Auswerten
Tick mark Image
W.r.t. x differenzieren
Tick mark Image

Ähnliche Aufgaben aus Websuche

Teilen

\int 112x^{13}+128x^{7}+16x+112x^{6}+16\mathrm{d}x
Verwenden Sie das Distributivgesetz, um 4x^{7}+4x+4 mit 28x^{6}+4 zu multiplizieren und gleiche Terme zusammenzufassen.
\int 112x^{13}\mathrm{d}x+\int 128x^{7}\mathrm{d}x+\int 16x\mathrm{d}x+\int 112x^{6}\mathrm{d}x+\int 16\mathrm{d}x
Summen-Ausdruck nach Ausdruck integrieren.
112\int x^{13}\mathrm{d}x+128\int x^{7}\mathrm{d}x+16\int x\mathrm{d}x+112\int x^{6}\mathrm{d}x+\int 16\mathrm{d}x
Klammern Sie die Konstanten in jedem Ausdruck aus.
8x^{14}+128\int x^{7}\mathrm{d}x+16\int x\mathrm{d}x+112\int x^{6}\mathrm{d}x+\int 16\mathrm{d}x
Wenn \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} für k\neq -1, ersetzen Sie \int x^{13}\mathrm{d}x durch \frac{x^{14}}{14}. Multiplizieren Sie 112 mit \frac{x^{14}}{14}.
8x^{14}+16x^{8}+16\int x\mathrm{d}x+112\int x^{6}\mathrm{d}x+\int 16\mathrm{d}x
Wenn \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} für k\neq -1, ersetzen Sie \int x^{7}\mathrm{d}x durch \frac{x^{8}}{8}. Multiplizieren Sie 128 mit \frac{x^{8}}{8}.
8x^{14}+16x^{8}+8x^{2}+112\int x^{6}\mathrm{d}x+\int 16\mathrm{d}x
Wenn \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} für k\neq -1, ersetzen Sie \int x\mathrm{d}x durch \frac{x^{2}}{2}. Multiplizieren Sie 16 mit \frac{x^{2}}{2}.
8x^{14}+16x^{8}+8x^{2}+16x^{7}+\int 16\mathrm{d}x
Wenn \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} für k\neq -1, ersetzen Sie \int x^{6}\mathrm{d}x durch \frac{x^{7}}{7}. Multiplizieren Sie 112 mit \frac{x^{7}}{7}.
8x^{14}+16x^{8}+8x^{2}+16x^{7}+16x
Suchen Sie die Integral 16 mithilfe der Tabelle der allgemeinen von integralen Regel \int a\mathrm{d}x=ax.
8x^{14}+16x^{8}+16x^{7}+8x^{2}+16x+С
Ist F\left(x\right) ein unbestimmtes Integral von f\left(x\right), wird die Menge aller unbestimmten Integrale von f\left(x\right) von F\left(x\right)+C angegeben. Fügen Sie deshalb die Konstante der Integralrechnung C\in \mathrm{R} zum Ergebnis hinzu.