Auswerten
1572584048032918633353217-1111984844349868137938112\sqrt{2}\approx -268435456
Teilen
In die Zwischenablage kopiert
\frac{\left(886731088897-627013566048\sqrt{2}\right)\left(886731088897-627013566048\sqrt{2}\right)}{\left(886731088897+627013566048\sqrt{2}\right)\left(886731088897-627013566048\sqrt{2}\right)}
Rationalisieren Sie den Nenner von \frac{886731088897-627013566048\sqrt{2}}{886731088897+627013566048\sqrt{2}}, indem Sie Zähler und Nenner mit 886731088897-627013566048\sqrt{2} multiplizieren.
\frac{\left(886731088897-627013566048\sqrt{2}\right)\left(886731088897-627013566048\sqrt{2}\right)}{886731088897^{2}-\left(627013566048\sqrt{2}\right)^{2}}
Betrachten Sie \left(886731088897+627013566048\sqrt{2}\right)\left(886731088897-627013566048\sqrt{2}\right). Die Multiplikation kann mithilfe folgender Regel in die Differenz von Quadratzahlen transformiert werden: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(886731088897-627013566048\sqrt{2}\right)^{2}}{886731088897^{2}-\left(627013566048\sqrt{2}\right)^{2}}
Multiplizieren Sie 886731088897-627013566048\sqrt{2} und 886731088897-627013566048\sqrt{2}, um \left(886731088897-627013566048\sqrt{2}\right)^{2} zu erhalten.
\frac{786292024016459316676609-1111984844349868137938112\sqrt{2}+393146012008229658338304\left(\sqrt{2}\right)^{2}}{886731088897^{2}-\left(627013566048\sqrt{2}\right)^{2}}
\left(886731088897-627013566048\sqrt{2}\right)^{2} mit dem binomischen Lehrsatz "\left(a-b\right)^{2}=a^{2}-2ab+b^{2}" erweitern.
\frac{786292024016459316676609-1111984844349868137938112\sqrt{2}+393146012008229658338304\times 2}{886731088897^{2}-\left(627013566048\sqrt{2}\right)^{2}}
Das Quadrat von \sqrt{2} ist 2.
\frac{786292024016459316676609-1111984844349868137938112\sqrt{2}+786292024016459316676608}{886731088897^{2}-\left(627013566048\sqrt{2}\right)^{2}}
Multiplizieren Sie 393146012008229658338304 und 2, um 786292024016459316676608 zu erhalten.
\frac{1572584048032918633353217-1111984844349868137938112\sqrt{2}}{886731088897^{2}-\left(627013566048\sqrt{2}\right)^{2}}
Addieren Sie 786292024016459316676609 und 786292024016459316676608, um 1572584048032918633353217 zu erhalten.
\frac{1572584048032918633353217-1111984844349868137938112\sqrt{2}}{786292024016459316676609-\left(627013566048\sqrt{2}\right)^{2}}
Potenzieren Sie 886731088897 mit 2, und erhalten Sie 786292024016459316676609.
\frac{1572584048032918633353217-1111984844349868137938112\sqrt{2}}{786292024016459316676609-627013566048^{2}\left(\sqrt{2}\right)^{2}}
Erweitern Sie \left(627013566048\sqrt{2}\right)^{2}.
\frac{1572584048032918633353217-1111984844349868137938112\sqrt{2}}{786292024016459316676609-393146012008229658338304\left(\sqrt{2}\right)^{2}}
Potenzieren Sie 627013566048 mit 2, und erhalten Sie 393146012008229658338304.
\frac{1572584048032918633353217-1111984844349868137938112\sqrt{2}}{786292024016459316676609-393146012008229658338304\times 2}
Das Quadrat von \sqrt{2} ist 2.
\frac{1572584048032918633353217-1111984844349868137938112\sqrt{2}}{786292024016459316676609-786292024016459316676608}
Multiplizieren Sie 393146012008229658338304 und 2, um 786292024016459316676608 zu erhalten.
\frac{1572584048032918633353217-1111984844349868137938112\sqrt{2}}{1}
Subtrahieren Sie 786292024016459316676608 von 786292024016459316676609, um 1 zu erhalten.
1572584048032918633353217-1111984844349868137938112\sqrt{2}
Eine beliebige Zahl, die durch 1 geteilt wird, ergibt sich selbst.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}