Direkt zum Inhalt
W.r.t. x differenzieren
Tick mark Image
Auswerten
Tick mark Image
Diagramm

Ähnliche Aufgaben aus Websuche

Teilen

2x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x})+\frac{1}{x}\frac{\mathrm{d}}{\mathrm{d}x}(2x^{2})
Für zwei beliebige differenzierbare Funktionen ergibt sich die Ableitung des Produkts der beiden Funktionen durch Multiplikation der ersten Funktion mit der Ableitung der zweiten Funktion plus der Multiplikation der zweiten Funktion mit der Ableitung der ersten Funktion.
2x^{2}\left(-1\right)x^{-1-1}+\frac{1}{x}\times 2\times 2x^{2-1}
Die Ableitung eines Polynoms ist die Summer der Ableitungen seiner Terme. Die Ableitung eines Terms mit Konstanten ist 0. Die Ableitung von ax^{n} ist nax^{n-1}.
2x^{2}\left(-1\right)x^{-2}+\frac{1}{x}\times 4x^{1}
Vereinfachen.
-2x^{2-2}+4x^{-1+1}
Um Potenzen der gleichen Basis zu multiplizieren, addieren Sie ihre Exponenten.
-2x^{0}+4x^{0}
Vereinfachen.
-2+4\times 1
Für jeden Term t, außer 0, t^{0}=1.
-2+4
Für jeden Term t, t\times 1=t und 1t=t.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2}{1}x^{2-1})
Zum Dividieren von Potenzen mit der gleichen Basis subtrahieren Sie den Exponenten des Nenners vom Exponenten des Zählers.
\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1})
Führen Sie die Berechnung aus.
2x^{1-1}
Die Ableitung eines Polynoms ist die Summer der Ableitungen seiner Terme. Die Ableitung eines Terms mit Konstanten ist 0. Die Ableitung von ax^{n} ist nax^{n-1}.
2x^{0}
Führen Sie die Berechnung aus.
2\times 1
Für jeden Term t, außer 0, t^{0}=1.
2
Für jeden Term t, t\times 1=t und 1t=t.
2x
Heben Sie x sowohl im Zähler als auch im Nenner auf.