Nach x auflösen
x=\frac{\sqrt{3}-1}{2}\approx 0,366025404
x=\frac{-\sqrt{3}-1}{2}\approx -1,366025404
Diagramm
Teilen
In die Zwischenablage kopiert
\frac{1}{2}=x^{2}+x
Verwenden Sie das Distributivgesetz, um x mit x+1 zu multiplizieren.
x^{2}+x=\frac{1}{2}
Seiten vertauschen, damit alle Terme mit Variablen auf der linken Seite sind.
x^{2}+x-\frac{1}{2}=0
Subtrahieren Sie \frac{1}{2} von beiden Seiten.
x=\frac{-1±\sqrt{1^{2}-4\left(-\frac{1}{2}\right)}}{2}
Diese Gleichung hat die Standardform: ax^{2}+bx+c=0. Ersetzen Sie in der quadratischen Gleichung a durch 1, b durch 1 und c durch -\frac{1}{2}, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-\frac{1}{2}\right)}}{2}
1 zum Quadrat.
x=\frac{-1±\sqrt{1+2}}{2}
Multiplizieren Sie -4 mit -\frac{1}{2}.
x=\frac{-1±\sqrt{3}}{2}
Addieren Sie 1 zu 2.
x=\frac{\sqrt{3}-1}{2}
Lösen Sie jetzt die Gleichung x=\frac{-1±\sqrt{3}}{2}, wenn ± positiv ist. Addieren Sie -1 zu \sqrt{3}.
x=\frac{-\sqrt{3}-1}{2}
Lösen Sie jetzt die Gleichung x=\frac{-1±\sqrt{3}}{2}, wenn ± negativ ist. Subtrahieren Sie \sqrt{3} von -1.
x=\frac{\sqrt{3}-1}{2} x=\frac{-\sqrt{3}-1}{2}
Die Gleichung ist jetzt gelöst.
\frac{1}{2}=x^{2}+x
Verwenden Sie das Distributivgesetz, um x mit x+1 zu multiplizieren.
x^{2}+x=\frac{1}{2}
Seiten vertauschen, damit alle Terme mit Variablen auf der linken Seite sind.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\frac{1}{2}+\left(\frac{1}{2}\right)^{2}
Dividieren Sie 1, den Koeffizienten des Terms x, durch 2, um \frac{1}{2} zu erhalten. Addieren Sie dann das Quadrat von \frac{1}{2} zu beiden Seiten der Gleichung. Dieser Schritt macht die linke Seite der Gleichung zu einem perfekten Quadrat.
x^{2}+x+\frac{1}{4}=\frac{1}{2}+\frac{1}{4}
Bestimmen Sie das Quadrat von \frac{1}{2}, indem Sie das Quadrat des Zählers und das Quadrat des Nenners des Bruchs bilden.
x^{2}+x+\frac{1}{4}=\frac{3}{4}
Addieren Sie \frac{1}{2} zu \frac{1}{4}, indem Sie einen gemeinsamen Nenner suchen und die Zähler addieren. Kürzen Sie anschließend den Bruch auf die kleinsten möglichen Terme.
\left(x+\frac{1}{2}\right)^{2}=\frac{3}{4}
Faktor x^{2}+x+\frac{1}{4}. Wenn x^{2}+bx+c ein perfektes Quadrat ist, kann es im Allgemeinen immer als \left(x+\frac{b}{2}\right)^{2} faktorisieren.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{3}{4}}
Ziehen Sie die Quadratwurzel beider Seiten der Gleichung.
x+\frac{1}{2}=\frac{\sqrt{3}}{2} x+\frac{1}{2}=-\frac{\sqrt{3}}{2}
Vereinfachen.
x=\frac{\sqrt{3}-1}{2} x=\frac{-\sqrt{3}-1}{2}
\frac{1}{2} von beiden Seiten der Gleichung subtrahieren.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}