Auswerten
\frac{x^{2}+5}{\left(x+5\right)\left(x^{2}-1\right)}
Erweitern
\frac{x^{2}+5}{\left(x+5\right)\left(x^{2}-1\right)}
Diagramm
Teilen
In die Zwischenablage kopiert
\frac{x+2}{\left(x-1\right)\left(x+5\right)}-\frac{3}{\left(x+1\right)\left(x+5\right)}
x^{2}+4x-5 faktorisieren. x^{2}+6x+5 faktorisieren.
\frac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}-\frac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Um Ausdrücke zu addieren oder subtrahieren, erweitern Sie sie, um ihre Nenner gleichnamig zu machen. Das kleinste gemeinsame Vielfache von \left(x-1\right)\left(x+5\right) und \left(x+1\right)\left(x+5\right) ist \left(x-1\right)\left(x+1\right)\left(x+5\right). Multiplizieren Sie \frac{x+2}{\left(x-1\right)\left(x+5\right)} mit \frac{x+1}{x+1}. Multiplizieren Sie \frac{3}{\left(x+1\right)\left(x+5\right)} mit \frac{x-1}{x-1}.
\frac{\left(x+2\right)\left(x+1\right)-3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Da \frac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)} und \frac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)} denselben Nenner haben, subtrahieren Sie diese, indem Sie ihre Zähler subtrahieren.
\frac{x^{2}+x+2x+2-3x+3}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Führen Sie die Multiplikationen als "\left(x+2\right)\left(x+1\right)-3\left(x-1\right)" aus.
\frac{x^{2}+5}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Ähnliche Terme in x^{2}+x+2x+2-3x+3 kombinieren.
\frac{x^{2}+5}{x^{3}+5x^{2}-x-5}
Erweitern Sie \left(x-1\right)\left(x+1\right)\left(x+5\right).
\frac{x+2}{\left(x-1\right)\left(x+5\right)}-\frac{3}{\left(x+1\right)\left(x+5\right)}
x^{2}+4x-5 faktorisieren. x^{2}+6x+5 faktorisieren.
\frac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}-\frac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Um Ausdrücke zu addieren oder subtrahieren, erweitern Sie sie, um ihre Nenner gleichnamig zu machen. Das kleinste gemeinsame Vielfache von \left(x-1\right)\left(x+5\right) und \left(x+1\right)\left(x+5\right) ist \left(x-1\right)\left(x+1\right)\left(x+5\right). Multiplizieren Sie \frac{x+2}{\left(x-1\right)\left(x+5\right)} mit \frac{x+1}{x+1}. Multiplizieren Sie \frac{3}{\left(x+1\right)\left(x+5\right)} mit \frac{x-1}{x-1}.
\frac{\left(x+2\right)\left(x+1\right)-3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Da \frac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)} und \frac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)} denselben Nenner haben, subtrahieren Sie diese, indem Sie ihre Zähler subtrahieren.
\frac{x^{2}+x+2x+2-3x+3}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Führen Sie die Multiplikationen als "\left(x+2\right)\left(x+1\right)-3\left(x-1\right)" aus.
\frac{x^{2}+5}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Ähnliche Terme in x^{2}+x+2x+2-3x+3 kombinieren.
\frac{x^{2}+5}{x^{3}+5x^{2}-x-5}
Erweitern Sie \left(x-1\right)\left(x+1\right)\left(x+5\right).
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}