Auswerten
-\frac{1}{\left(x+3\right)^{2}}
W.r.t. x differenzieren
\frac{2}{\left(x+3\right)^{3}}
Teilen
In die Zwischenablage kopiert
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1^{2}}{\left(\sqrt{x+3}\right)^{2}})
Um \frac{1}{\sqrt{x+3}} zu potenzieren, potenzieren Sie sowohl den Zähler als auch den Nenner, und dividieren Sie dann.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{\left(\sqrt{x+3}\right)^{2}})
Potenzieren Sie 1 mit 2, und erhalten Sie 1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x+3})
Potenzieren Sie \sqrt{x+3} mit 2, und erhalten Sie x+3.
-\left(x^{1}+3\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+3)
Wenn F die Zusammensetzung zweier differenzierbarer Funktionen f\left(u\right) und u=g\left(x\right) ist, d.h. wenn F\left(x\right)=f\left(g\left(x\right)\right), dann ist die Ableitung von F die Ableitung von f bezogen auf u multipliziert mit der Ableitung von g bezogen auf x, also \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(x^{1}+3\right)^{-2}x^{1-1}
Die Ableitung eines Polynoms ist die Summer der Ableitungen seiner Terme. Die Ableitung eines Terms mit Konstanten ist 0. Die Ableitung von ax^{n} ist nax^{n-1}.
-x^{0}\left(x^{1}+3\right)^{-2}
Vereinfachen.
-x^{0}\left(x+3\right)^{-2}
Für jeden Term t, t^{1}=t.
-\left(x+3\right)^{-2}
Für jeden Term t, außer 0, t^{0}=1.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}