Nach x auflösen
x = \frac{79}{15} = 5\frac{4}{15} \approx 5,266666667
Diagramm
Teilen
In die Zwischenablage kopiert
4\left(5x-1\right)-10\left(1+x\right)=60-5\left(x-1\right)
Multiplizieren Sie beide Seiten der Gleichung mit 20, dem kleinsten gemeinsamen Vielfachen von 5,2,4.
20x-4-10\left(1+x\right)=60-5\left(x-1\right)
Verwenden Sie das Distributivgesetz, um 4 mit 5x-1 zu multiplizieren.
20x-4-10-10x=60-5\left(x-1\right)
Verwenden Sie das Distributivgesetz, um -10 mit 1+x zu multiplizieren.
20x-14-10x=60-5\left(x-1\right)
Subtrahieren Sie 10 von -4, um -14 zu erhalten.
10x-14=60-5\left(x-1\right)
Kombinieren Sie 20x und -10x, um 10x zu erhalten.
10x-14=60-5x+5
Verwenden Sie das Distributivgesetz, um -5 mit x-1 zu multiplizieren.
10x-14=65-5x
Addieren Sie 60 und 5, um 65 zu erhalten.
10x-14+5x=65
Auf beiden Seiten 5x addieren.
15x-14=65
Kombinieren Sie 10x und 5x, um 15x zu erhalten.
15x=65+14
Auf beiden Seiten 14 addieren.
15x=79
Addieren Sie 65 und 14, um 79 zu erhalten.
x=\frac{79}{15}
Dividieren Sie beide Seiten durch 15.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}