Nach v auflösen
v=\frac{25}{114}\approx 0,219298246
Teilen
In die Zwischenablage kopiert
\frac{3}{5}v-\frac{7}{3}+7v=-\frac{2}{3}
Auf beiden Seiten 7v addieren.
\frac{38}{5}v-\frac{7}{3}=-\frac{2}{3}
Kombinieren Sie \frac{3}{5}v und 7v, um \frac{38}{5}v zu erhalten.
\frac{38}{5}v=-\frac{2}{3}+\frac{7}{3}
Auf beiden Seiten \frac{7}{3} addieren.
\frac{38}{5}v=\frac{-2+7}{3}
Da -\frac{2}{3} und \frac{7}{3} denselben Nenner haben, addieren Sie diese, indem Sie ihre Zähler addieren.
\frac{38}{5}v=\frac{5}{3}
Addieren Sie -2 und 7, um 5 zu erhalten.
v=\frac{5}{3}\times \frac{5}{38}
Multiplizieren Sie beide Seiten mit \frac{5}{38}, dem Kehrwert von \frac{38}{5}.
v=\frac{5\times 5}{3\times 38}
Multiplizieren Sie \frac{5}{3} mit \frac{5}{38}, indem Sie den Zähler mit dem Zähler und den Nenner mit dem Nenner multiplizieren.
v=\frac{25}{114}
Führen Sie die Multiplikationen im Bruch \frac{5\times 5}{3\times 38} aus.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}