W.r.t. t differenzieren
\frac{2t^{2}\left(3t^{2}-4t-21\right)}{-9t^{4}+12t^{3}+38t^{2}-28t-49}
Auswerten
\frac{2t^{3}}{7+2t-3t^{2}}
Teilen
In die Zwischenablage kopiert
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{2t^{3}}{7-3t^{2}+2t})
Addieren Sie 3 und 4, um 7 zu erhalten.
\frac{\left(-3t^{2}+2t^{1}+7\right)\frac{\mathrm{d}}{\mathrm{d}t}(2t^{3})-2t^{3}\frac{\mathrm{d}}{\mathrm{d}t}(-3t^{2}+2t^{1}+7)}{\left(-3t^{2}+2t^{1}+7\right)^{2}}
Für zwei beliebige differenzierbare Funktionen ergibt sich die Ableitung des Quotienten der beiden Funktionen durch Multiplikation des Nenners mit der Ableitung des Zählers minus dem Produkt aus dem Zähler mit der Ableitung des Nenners, das Ganze dividiert durch das Quadrat des Nenners.
\frac{\left(-3t^{2}+2t^{1}+7\right)\times 3\times 2t^{3-1}-2t^{3}\left(2\left(-3\right)t^{2-1}+2t^{1-1}\right)}{\left(-3t^{2}+2t^{1}+7\right)^{2}}
Die Ableitung eines Polynoms ist die Summer der Ableitungen seiner Terme. Die Ableitung eines Terms mit Konstanten ist 0. Die Ableitung von ax^{n} ist nax^{n-1}.
\frac{\left(-3t^{2}+2t^{1}+7\right)\times 6t^{2}-2t^{3}\left(-6t^{1}+2t^{0}\right)}{\left(-3t^{2}+2t^{1}+7\right)^{2}}
Vereinfachen.
\frac{-3t^{2}\times 6t^{2}+2t^{1}\times 6t^{2}+7\times 6t^{2}-2t^{3}\left(-6t^{1}+2t^{0}\right)}{\left(-3t^{2}+2t^{1}+7\right)^{2}}
Multiplizieren Sie -3t^{2}+2t^{1}+7 mit 6t^{2}.
\frac{-3t^{2}\times 6t^{2}+2t^{1}\times 6t^{2}+7\times 6t^{2}-\left(2t^{3}\left(-6\right)t^{1}+2t^{3}\times 2t^{0}\right)}{\left(-3t^{2}+2t^{1}+7\right)^{2}}
Multiplizieren Sie 2t^{3} mit -6t^{1}+2t^{0}.
\frac{-3\times 6t^{2+2}+2\times 6t^{1+2}+7\times 6t^{2}-\left(2\left(-6\right)t^{3+1}+2\times 2t^{3}\right)}{\left(-3t^{2}+2t^{1}+7\right)^{2}}
Um Potenzen der gleichen Basis zu multiplizieren, addieren Sie ihre Exponenten.
\frac{-18t^{4}+12t^{3}+42t^{2}-\left(-12t^{4}+4t^{3}\right)}{\left(-3t^{2}+2t^{1}+7\right)^{2}}
Vereinfachen.
\frac{-6t^{4}+8t^{3}+42t^{2}}{\left(-3t^{2}+2t^{1}+7\right)^{2}}
Kombinieren Sie ähnliche Terme.
\frac{-6t^{4}+8t^{3}+42t^{2}}{\left(-3t^{2}+2t+7\right)^{2}}
Für jeden Term t, t^{1}=t.
\frac{2t^{3}}{7-3t^{2}+2t}
Addieren Sie 3 und 4, um 7 zu erhalten.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}