Direkt zum Inhalt
W.r.t. x differenzieren
Tick mark Image
Auswerten
Tick mark Image
Diagramm

Ähnliche Aufgaben aus Websuche

Teilen

-\left(3x^{2}+2x^{1}+1\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(3x^{2}+2x^{1}+1)
Wenn F die Zusammensetzung zweier differenzierbarer Funktionen f\left(u\right) und u=g\left(x\right) ist, d.h. wenn F\left(x\right)=f\left(g\left(x\right)\right), dann ist die Ableitung von F die Ableitung von f bezogen auf u multipliziert mit der Ableitung von g bezogen auf x, also \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(3x^{2}+2x^{1}+1\right)^{-2}\left(2\times 3x^{2-1}+2x^{1-1}\right)
Die Ableitung eines Polynoms ist die Summer der Ableitungen seiner Terme. Die Ableitung eines Terms mit Konstanten ist 0. Die Ableitung von ax^{n} ist nax^{n-1}.
\left(3x^{2}+2x^{1}+1\right)^{-2}\left(-6x^{1}-2x^{0}\right)
Vereinfachen.
\left(3x^{2}+2x+1\right)^{-2}\left(-6x-2x^{0}\right)
Für jeden Term t, t^{1}=t.
\left(3x^{2}+2x+1\right)^{-2}\left(-6x-2\right)
Für jeden Term t, außer 0, t^{0}=1.