Nach A_s auflösen (komplexe Lösung)
\left\{\begin{matrix}A_{s}=-\frac{by^{2}}{2n\left(y-d\right)}\text{, }&y\neq d\text{ and }n\neq 0\\A_{s}\in \mathrm{C}\text{, }&\left(b=0\text{ and }y=d\right)\text{ or }\left(y=0\text{ and }d=0\right)\text{ or }\left(y=0\text{ and }n=0\text{ and }d\neq 0\right)\text{ or }\left(b=0\text{ and }n=0\text{ and }y\neq d\right)\end{matrix}\right,
Nach b auflösen (komplexe Lösung)
\left\{\begin{matrix}b=-\frac{2A_{s}n\left(y-d\right)}{y^{2}}\text{, }&y\neq 0\\b\in \mathrm{C}\text{, }&\left(n=0\text{ or }A_{s}=0\text{ or }d=0\right)\text{ and }y=0\end{matrix}\right,
Nach A_s auflösen
\left\{\begin{matrix}A_{s}=-\frac{by^{2}}{2n\left(y-d\right)}\text{, }&y\neq d\text{ and }n\neq 0\\A_{s}\in \mathrm{R}\text{, }&\left(b=0\text{ and }y=d\right)\text{ or }\left(y=0\text{ and }d=0\right)\text{ or }\left(y=0\text{ and }n=0\text{ and }d\neq 0\right)\text{ or }\left(b=0\text{ and }n=0\text{ and }y\neq d\right)\end{matrix}\right,
Nach b auflösen
\left\{\begin{matrix}b=-\frac{2A_{s}n\left(y-d\right)}{y^{2}}\text{, }&y\neq 0\\b\in \mathrm{R}\text{, }&\left(n=0\text{ or }A_{s}=0\text{ or }d=0\right)\text{ and }y=0\end{matrix}\right,
Diagramm
Teilen
In die Zwischenablage kopiert
nA_{s}y-nA_{s}d=-\frac{1}{2}by^{2}
Subtrahieren Sie \frac{1}{2}by^{2} von beiden Seiten. Jede Subtraktion von null ergibt ihre Negation.
\left(ny-nd\right)A_{s}=-\frac{1}{2}by^{2}
Kombinieren Sie alle Terme, die A_{s} enthalten.
\left(ny-dn\right)A_{s}=-\frac{by^{2}}{2}
Die Gleichung weist die Standardform auf.
\frac{\left(ny-dn\right)A_{s}}{ny-dn}=-\frac{\frac{by^{2}}{2}}{ny-dn}
Dividieren Sie beide Seiten durch ny-nd.
A_{s}=-\frac{\frac{by^{2}}{2}}{ny-dn}
Division durch ny-nd macht die Multiplikation mit ny-nd rückgängig.
A_{s}=-\frac{by^{2}}{2n\left(y-d\right)}
Dividieren Sie -\frac{by^{2}}{2} durch ny-nd.
\frac{1}{2}by^{2}+nA_{s}y=0+nA_{s}d
Auf beiden Seiten nA_{s}d addieren.
\frac{1}{2}by^{2}+nA_{s}y=nA_{s}d
Eine beliebige Zahl plus null ergibt sich selbst.
\frac{1}{2}by^{2}=nA_{s}d-nA_{s}y
Subtrahieren Sie nA_{s}y von beiden Seiten.
\frac{1}{2}by^{2}=-A_{s}ny+A_{s}dn
Ordnen Sie die Terme neu an.
\frac{y^{2}}{2}b=A_{s}dn-A_{s}ny
Die Gleichung weist die Standardform auf.
\frac{2\times \frac{y^{2}}{2}b}{y^{2}}=\frac{2A_{s}n\left(d-y\right)}{y^{2}}
Dividieren Sie beide Seiten durch \frac{1}{2}y^{2}.
b=\frac{2A_{s}n\left(d-y\right)}{y^{2}}
Division durch \frac{1}{2}y^{2} macht die Multiplikation mit \frac{1}{2}y^{2} rückgängig.
nA_{s}y-nA_{s}d=-\frac{1}{2}by^{2}
Subtrahieren Sie \frac{1}{2}by^{2} von beiden Seiten. Jede Subtraktion von null ergibt ihre Negation.
\left(ny-nd\right)A_{s}=-\frac{1}{2}by^{2}
Kombinieren Sie alle Terme, die A_{s} enthalten.
\left(ny-dn\right)A_{s}=-\frac{by^{2}}{2}
Die Gleichung weist die Standardform auf.
\frac{\left(ny-dn\right)A_{s}}{ny-dn}=-\frac{\frac{by^{2}}{2}}{ny-dn}
Dividieren Sie beide Seiten durch ny-nd.
A_{s}=-\frac{\frac{by^{2}}{2}}{ny-dn}
Division durch ny-nd macht die Multiplikation mit ny-nd rückgängig.
A_{s}=-\frac{by^{2}}{2n\left(y-d\right)}
Dividieren Sie -\frac{by^{2}}{2} durch ny-nd.
\frac{1}{2}by^{2}+nA_{s}y=0+nA_{s}d
Auf beiden Seiten nA_{s}d addieren.
\frac{1}{2}by^{2}+nA_{s}y=nA_{s}d
Eine beliebige Zahl plus null ergibt sich selbst.
\frac{1}{2}by^{2}=nA_{s}d-nA_{s}y
Subtrahieren Sie nA_{s}y von beiden Seiten.
\frac{1}{2}by^{2}=-A_{s}ny+A_{s}dn
Ordnen Sie die Terme neu an.
\frac{y^{2}}{2}b=A_{s}dn-A_{s}ny
Die Gleichung weist die Standardform auf.
\frac{2\times \frac{y^{2}}{2}b}{y^{2}}=\frac{2A_{s}n\left(d-y\right)}{y^{2}}
Dividieren Sie beide Seiten durch \frac{1}{2}y^{2}.
b=\frac{2A_{s}n\left(d-y\right)}{y^{2}}
Division durch \frac{1}{2}y^{2} macht die Multiplikation mit \frac{1}{2}y^{2} rückgängig.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}