Nach A auflösen
A=\frac{1}{10BDQ}
B\neq 0\text{ and }D\neq 0\text{ and }Q\neq 0
Nach B auflösen
B=\frac{1}{10ADQ}
D\neq 0\text{ and }A\neq 0\text{ and }Q\neq 0
Teilen
In die Zwischenablage kopiert
\frac{3}{5}-QADB=\frac{1}{2}
Seiten vertauschen, damit alle Terme mit Variablen auf der linken Seite sind.
-QADB=\frac{1}{2}-\frac{3}{5}
Subtrahieren Sie \frac{3}{5} von beiden Seiten.
-QADB=-\frac{1}{10}
Subtrahieren Sie \frac{3}{5} von \frac{1}{2}, um -\frac{1}{10} zu erhalten.
\left(-BDQ\right)A=-\frac{1}{10}
Die Gleichung weist die Standardform auf.
\frac{\left(-BDQ\right)A}{-BDQ}=-\frac{\frac{1}{10}}{-BDQ}
Dividieren Sie beide Seiten durch -QDB.
A=-\frac{\frac{1}{10}}{-BDQ}
Division durch -QDB macht die Multiplikation mit -QDB rückgängig.
A=\frac{1}{10BDQ}
Dividieren Sie -\frac{1}{10} durch -QDB.
\frac{3}{5}-QADB=\frac{1}{2}
Seiten vertauschen, damit alle Terme mit Variablen auf der linken Seite sind.
-QADB=\frac{1}{2}-\frac{3}{5}
Subtrahieren Sie \frac{3}{5} von beiden Seiten.
-QADB=-\frac{1}{10}
Subtrahieren Sie \frac{3}{5} von \frac{1}{2}, um -\frac{1}{10} zu erhalten.
\left(-ADQ\right)B=-\frac{1}{10}
Die Gleichung weist die Standardform auf.
\frac{\left(-ADQ\right)B}{-ADQ}=-\frac{\frac{1}{10}}{-ADQ}
Dividieren Sie beide Seiten durch -QAD.
B=-\frac{\frac{1}{10}}{-ADQ}
Division durch -QAD macht die Multiplikation mit -QAD rückgängig.
B=\frac{1}{10ADQ}
Dividieren Sie -\frac{1}{10} durch -QAD.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}