\frac { 049 - x ^ { 2 } } { 07 - x } \text { para } x = - 13 é
Nach p auflösen (komplexe Lösung)
\left\{\begin{matrix}p=-\frac{13é}{rx\left(x+7\right)a^{2}}\text{, }&a\neq 0\text{ and }r\neq 0\text{ and }x\neq -7\text{ and }x\neq 0\text{ and }x\neq 7\\p\in \mathrm{C}\text{, }&\left(a=0\text{ or }r=0\text{ or }x=-7\text{ or }x=0\right)\text{ and }é=0\text{ and }x\neq 7\end{matrix}\right,
Nach p auflösen
\left\{\begin{matrix}p=-\frac{13é}{rx\left(x+7\right)a^{2}}\text{, }&a\neq 0\text{ and }r\neq 0\text{ and }x\neq 0\text{ and }|x|\neq 7\\p\in \mathrm{R}\text{, }&\left(a=0\text{ or }r=0\text{ or }x=-7\text{ or }x=0\right)\text{ and }é=0\text{ and }x\neq 7\end{matrix}\right,
Nach a auflösen (komplexe Lösung)
\left\{\begin{matrix}a=-ip^{-\frac{1}{2}}r^{-\frac{1}{2}}x^{-\frac{1}{2}}\left(x+7\right)^{-\frac{1}{2}}\sqrt{13é}\text{; }a=ip^{-\frac{1}{2}}r^{-\frac{1}{2}}x^{-\frac{1}{2}}\left(x+7\right)^{-\frac{1}{2}}\sqrt{13é}\text{, }&x\neq 0\text{ and }r\neq 0\text{ and }p\neq 0\text{ and }x\neq -7\text{ and }x\neq 7\\a\in \mathrm{C}\text{, }&x\neq 7\text{ and }\left(r=0\text{ or }p=0\text{ or }x=-7\text{ or }x=0\right)\text{ and }é=0\end{matrix}\right,
Teilen
In die Zwischenablage kopiert
\left(49-x^{2}\right)parax=-13é\left(-x+7\right)
Multiplizieren Sie beide Seiten der Gleichung mit -x+7.
\left(49-x^{2}\right)pa^{2}rx=-13é\left(-x+7\right)
Multiplizieren Sie a und a, um a^{2} zu erhalten.
\left(49p-x^{2}p\right)a^{2}rx=-13é\left(-x+7\right)
Verwenden Sie das Distributivgesetz, um 49-x^{2} mit p zu multiplizieren.
\left(49pa^{2}-x^{2}pa^{2}\right)rx=-13é\left(-x+7\right)
Verwenden Sie das Distributivgesetz, um 49p-x^{2}p mit a^{2} zu multiplizieren.
\left(49pa^{2}r-x^{2}pa^{2}r\right)x=-13é\left(-x+7\right)
Verwenden Sie das Distributivgesetz, um 49pa^{2}-x^{2}pa^{2} mit r zu multiplizieren.
49pa^{2}rx-pa^{2}rx^{3}=-13é\left(-x+7\right)
Verwenden Sie das Distributivgesetz, um 49pa^{2}r-x^{2}pa^{2}r mit x zu multiplizieren.
49pa^{2}rx-pa^{2}rx^{3}=13éx-91é
Verwenden Sie das Distributivgesetz, um -13é mit -x+7 zu multiplizieren.
\left(49a^{2}rx-a^{2}rx^{3}\right)p=13éx-91é
Kombinieren Sie alle Terme, die p enthalten.
\left(49rxa^{2}-ra^{2}x^{3}\right)p=13xé-91é
Die Gleichung weist die Standardform auf.
\frac{\left(49rxa^{2}-ra^{2}x^{3}\right)p}{49rxa^{2}-ra^{2}x^{3}}=\frac{13é\left(x-7\right)}{49rxa^{2}-ra^{2}x^{3}}
Dividieren Sie beide Seiten durch 49a^{2}rx-a^{2}rx^{3}.
p=\frac{13é\left(x-7\right)}{49rxa^{2}-ra^{2}x^{3}}
Division durch 49a^{2}rx-a^{2}rx^{3} macht die Multiplikation mit 49a^{2}rx-a^{2}rx^{3} rückgängig.
p=-\frac{13é}{rx\left(x+7\right)a^{2}}
Dividieren Sie 13é\left(-7+x\right) durch 49a^{2}rx-a^{2}rx^{3}.
\left(49-x^{2}\right)parax=-13é\left(-x+7\right)
Multiplizieren Sie beide Seiten der Gleichung mit -x+7.
\left(49-x^{2}\right)pa^{2}rx=-13é\left(-x+7\right)
Multiplizieren Sie a und a, um a^{2} zu erhalten.
\left(49p-x^{2}p\right)a^{2}rx=-13é\left(-x+7\right)
Verwenden Sie das Distributivgesetz, um 49-x^{2} mit p zu multiplizieren.
\left(49pa^{2}-x^{2}pa^{2}\right)rx=-13é\left(-x+7\right)
Verwenden Sie das Distributivgesetz, um 49p-x^{2}p mit a^{2} zu multiplizieren.
\left(49pa^{2}r-x^{2}pa^{2}r\right)x=-13é\left(-x+7\right)
Verwenden Sie das Distributivgesetz, um 49pa^{2}-x^{2}pa^{2} mit r zu multiplizieren.
49pa^{2}rx-pa^{2}rx^{3}=-13é\left(-x+7\right)
Verwenden Sie das Distributivgesetz, um 49pa^{2}r-x^{2}pa^{2}r mit x zu multiplizieren.
49pa^{2}rx-pa^{2}rx^{3}=13éx-91é
Verwenden Sie das Distributivgesetz, um -13é mit -x+7 zu multiplizieren.
\left(49a^{2}rx-a^{2}rx^{3}\right)p=13éx-91é
Kombinieren Sie alle Terme, die p enthalten.
\left(49rxa^{2}-ra^{2}x^{3}\right)p=13xé-91é
Die Gleichung weist die Standardform auf.
\frac{\left(49rxa^{2}-ra^{2}x^{3}\right)p}{49rxa^{2}-ra^{2}x^{3}}=\frac{13é\left(x-7\right)}{49rxa^{2}-ra^{2}x^{3}}
Dividieren Sie beide Seiten durch 49a^{2}rx-a^{2}rx^{3}.
p=\frac{13é\left(x-7\right)}{49rxa^{2}-ra^{2}x^{3}}
Division durch 49a^{2}rx-a^{2}rx^{3} macht die Multiplikation mit 49a^{2}rx-a^{2}rx^{3} rückgängig.
p=-\frac{13é}{rx\left(x+7\right)a^{2}}
Dividieren Sie 13é\left(-7+x\right) durch 49a^{2}rx-a^{2}rx^{3}.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}